• Title/Summary/Keyword: BEM analysis

Search Result 320, Processing Time 0.026 seconds

On the Study of New Numerical Analysis in the Transient Electromagnetic Wave Scattering (전자파의 과도적 산란 특성에 관한 새로운 수치해석 연구)

  • 이강호;이상회;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • In this paper, the transient electromagneti wave scattering at dielectric cylinder is studied by new numerical analysis method. Basic formulation of boundary integral equation (BIE) for numerical method is started weighted residual technique. BIE is made to two simultaneous equation at surface inner and outside point of dielectric cylinder in extended boundary condition (EBC) and surface boundary condition (SBC). Numerical method is used Boundary element method (BEM) that is two form, one is direct method and the other is indirect method, so that this method that transformes operator inversion martics is used numerical analysis. A good agreement of this numerical solution and the other results is obtained.

  • PDF

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

2-D Magnetostatic Field Analysis Using Adaptive Boundary Element Method (적응 경계요소법을 이용한 2차원 정자장 해석)

  • Koh, Chang-Seop;Jeon, Ki-Eock;Hahn, Song-Yop;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.23-27
    • /
    • 1990
  • Adaptive mesh refinement scheme is incorporated with the Boundary Element Method (BEM) in order to get accurate solution with relatively fewer unknowns for the case of magnetostatic field analysis and A new and simple posteriori local error estimation method is presented. The local error is defined as integration over the element of the difference between solutions acquired us ing second order and first order interpolation function and is used as the criterion for mesh refinement at given grid. Case study for two dimensional problems with singular point reveals that meshes are concentrated on the neighbor of singular point and the error is decreased gradually and the solutions calculated on the domain are converged to the analytic solution as the number of unknowns increases. The adaptive mesh gives much better rate of convergence in global errors than the uniform mesh.

  • PDF

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Acoustical Performance Analysis of the Simple Expansion Chamber by using CFD (CFD를 이용한 단순확장관의 음향특성 해석)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung;Jeong, Weui-Bong;Kim, Hyung-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1354-1359
    • /
    • 2007
  • This paper discusses the acoustic performance of simple expansion chamber using computational fluid dynamics(CFD). The CFD model consists of an axisymmetric grid with a single period sinusoid of acceptable amplitude and duration imposed at the inlet boundary condition. The time history of the static pressure is recorded at two points, one in the inlet pipe and one point in outlet pipe. The time history of the static pressure is converted to the frequency domain using Fourier Transform and the transmission loss (TL) of the muffler is obtained from the ratio of the static pressure at the inlet and outlet pipe. The transmission loss of CFD result is compared with that of the computational acoustic analysis using the boundary element method (BEM). There are some differences in two results due to the pressure drop according to the inlet and outlet pipe length. Therefore, the effects of the pressure drop to the transmission loss have to be considered.

  • PDF

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

A Study on Insertion Loss Estimation Formulas of Rectangular Silencers for Ships (선박용 사각 소음기의 삽입손실 추정식 연구)

  • Kim, Tae-Gyoung;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Kong, Young-Mo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.820-826
    • /
    • 2016
  • The acoustic performance estimation formulas for silencers are developed mainly by theoretical or empirical methods. However, the existing formulas are available only for a limited range of silencers. In this paper, the procedures for noise analysis of the silencers are established by comparing analytic results to experimental results. With the proven analysis procedures, impedances of the rectangular silencers for ships are adversely predicted from National Environmental Balancing Bureau (NEBB) data, and with the estimated impedances, insertion loss formulas for large silencers are developed using boundary element method (BEM). The developed formulas can be efficiently used for predicting acoustic performance of the silencers for ships.

A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method (경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구)

  • Lee, Jun-Hyeon;Lee, Seo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

Optimization of a Train Suspension using Kriging Model (크리깅 모델에 의한 철도차량 현수장치 최적설계)

  • Park, Chan-Kyoung;Lee, Kwang-Ki;Lee, Tae-Hee;Bae, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.864-870
    • /
    • 2003
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM(Finite Element Method) and BEM(Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta -modeling technique has been developed for solving such a complex problems combined with the DACE(Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building approximation models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty -six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging model of a train suspension. After each Kriging model is constructed, multi -objective optimal solutions are achieved by using a nonlinear programming method called SQP(Sequential Quadratic Programming).

Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine

  • Ilhan, Akin;Bilgili, Mehmet;Sahin, Besir
    • Wind and Structures
    • /
    • v.27 no.3
    • /
    • pp.187-197
    • /
    • 2018
  • In this study, aerodynamic characteristics of a horizontal axis wind turbine (HAWT) were evaluated and discussed in terms of measured data in existing onshore wind farm. Five wind turbines (T1, T2, T3, T4 and T5) were selected, and hub-height wind speed, $U_D$, wind turbine power output, P and turbine rotational speed, ${\Omega}$ data measured from these turbines were used for evaluation. In order to obtain characteristics of axial flow induction factor, a, power coefficient, $C_p$, thrust force coefficient, $C_T$, thrust force, T and tangential flow induction factor, a', Blade Element Momentum (BEM) theory was used. According to the results obtained, during a year, probability density of turbines at a rotational speed of 16.1 rpm was determined as approximately 45%. Optimum tip speed ratio was calculated to be 7.12 for most efficient wind turbine. Maximum $C_p$ was found to be 30% corresponding to this tip speed ratio.