• Title/Summary/Keyword: BCD adder

Search Result 3, Processing Time 0.018 seconds

A Design of the Redundant Binary Coded Decimal Adder for the Carry-Free Binary Coded Decimal Addition (Redundant 십진코드를 이용하여 십진 자리간 Carry 전파를 제거한 십진 Adder 설계)

  • Je, Jung-Min;Chung, Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.491-494
    • /
    • 2006
  • In the adder design, reduction of the delay of the carry propagation or ripple is the most important consideration. Previously, it was introduced that, if a redundant number system is adopted, the carry propagation is completely eliminated, with which addition can be done in a constant time, without regarding to the count of the digits of numbers involved in addition. In this paper, a RBCD(Redundant Binary Coded Decimal) is adopted to code 0 to 11, and an efficient and economic carry-free BCD adder is designed.

An Excess-3 Code Carry Lookahead Design for High-Speed Decimal Addition (고속 십진 가산을 위한 3초과 코드 Carry Lookahead설계)

  • 최종화;유영갑
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.241-249
    • /
    • 2003
  • Carry lookahead(CLA) circuitry of decimal adders is proposed aiming at delay reduction. The truncation error in calculation of monetary interests may accumulate yielding a substantial amount of errors. Binary Coded Decimal(BCD) additions. for example, eliminate the truncation error in a fractional representation of decimal numbers. The proposed BCD carry lookahead scheme is aiming at the speed improvements without any truncation errors in the addition of decimal fractions. The delay estimation of the BCD CLA is demonstrated with improved performance in addition. Further reduction in delay can be achieved introducing non-weighted number system such as the excess-3 code.

High-Speed Dynamic Decimal Adder Design (고속 다이나믹 십진 가산기 설계)

  • You, Young-Gap;Kim, Yong-Dae;Choi, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.10-16
    • /
    • 2006
  • This paper proposed a carry lookahead (CLA) circuitry design. It was based on dynamic circuit aiming at delay reduction in an addition of BCD coded decimal numbers. The performance of these decimal adders is analyzed demonstrating their speed improvement. Timing simulation on the proposed decimal addition circuit employing $0.18{\mu}m$ CMOS technology yielded the worst-case delay of 0.83 ns at 16-digit. The proposed scheme showed a speed improvement compared to several schemes for decimal addition.