• 제목/요약/키워드: BBB

검색결과 142건 처리시간 0.026초

Donepezil, Tacrine and $\alpha-Phenyl-n-tert-Butyl Nitrone$ (PBN) Inhibit Choline Transport by Conditionally Immortalized Rat Brain Capillary Endothelial Cell Lines (TR-BBB)

  • Kang Young-Sook;Lee Kyeong-Eun;Lee Na-Young;Terasaki Tetsuya
    • Archives of Pharmacal Research
    • /
    • 제28권4호
    • /
    • pp.443-450
    • /
    • 2005
  • In the present study, we have characterized the choline transport system and examined the influence of various amine drugs on the choline transporter using a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The cell-to-medium (C/M) ratio of $[^3{H}]choline$ in TR-BBB cells increased time-dependently. The initial uptake rate of $[^3{H}]choline$ was concentration-dependent with a Michaelis-Menten value, $K_{m}$, of $26.2\pm2.7{\mu}M$. The $[^3{H}]choline$ uptake into TR-BBB was $Na^{+}-independent$, but was membrane potential-dependent. The $[^3{H}]choline$ uptake was susceptible to inhibition by hemicholinium-3, and tetraethy-lammonium (TEA), which are organic cation transporter substrates. Also, the uptake of $[^3{H}]choline$ was competitively inhibited with $K_{i}$ values of $274 {\mu}M, 251 {\mu}M and 180 {\mu}M$ in the presence of donepezil hydrochloride, tacrine and $\alpha-phenyl-n-tert-butyl nitrone$ (PBN), respectively. These characteristics of choline transport are consistent with those of the organic cation transporter (OCT). OCT2 mRNA was expressed in TR-BBB cells, while the expression of OCT3 or choline transporter (CHT) was not detected. Accordingly, these results suggest that OCT2 is a candidate for choline transport at the BBB and may influence the BBB permeability of amine drugs.

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.

Mannitol의 주입 경로와 양 및 농도가 혈-뇌 장벽 손상에 미치는 효과 (Effects of injection route, volume and concentration of mannitol on blood-brain barrier disruption)

  • 차명훈;이규홍;이철현;정명애;손진훈;정재준;이배환
    • 감성과학
    • /
    • 제11권4호
    • /
    • pp.565-574
    • /
    • 2008
  • 감성을 비롯한 인간의 뇌 기능은 혈-뇌 장벽을 매개로 약물의 작용에 의해 직접적인 영향을 받을 수 있다. 이 연구는 mannitol의 투여경로와 양, 농도에 의한 혈-뇌 장벽(blood-brain barrier, BBB)의 변화를 알아보고자 수행되었다. 실험동물로서 흰쥐에 20%의 mannitol을 오른쪽 뇌경동맥(internal carotid artery, ICA)을 통하여 주입하였고, 다른 그룹에서는 femoral vein을 통하여 주입하였다. 또한 각기 다른 경로를 이용하여 Evans blue(EB) 염색 시료를 투여한 후 BBB의 변성 정도를 확인하였다. 실험결과 ICA를 통해서 mannitol이 주입된 동물은 동측(ipsilateral side)이 대측(contralateral side)에 비해 EB 염색시료에 의해 영향을 많이 받았으나, femoral vein을 통해서 주입한 경우에는 mannitol의 양과 농도를 증가시켜도 EB 염색시료에 의한 영향이 거의 나타나지 않았다. 이러한 결과는 비록 EB 염색시료의 주입이 ICA를 통해서 또는 정맥경로를 따라서 이루어지더라도, BBB의 변성은 ICA를 통해서 이루어진다고 볼 수 있으며, 이러한 결과는 BBB의 제한적인 조절작용을 통해 인간의 뇌 기능을 이해하는데 좋은 방법을 제공할 수 있다는 것을 시사한다.

  • PDF

내인성물질의 수송계를 이용한 혈액-뇌관문에의 약물송달V-약물의 혈액-뇌관문 투과성에 대한 염기성 아민 및 모노카르본산 수송계의 역할- (Drug Delivery into the Blood-Brain Barrier by Endogenous Substances-A Role of Amine and Monocarboxylic Acid Carrier Systems for the Drug Transport-)

  • 강영숙
    • Journal of Pharmaceutical Investigation
    • /
    • 제20권4호
    • /
    • pp.223-228
    • /
    • 1990
  • The contribution of endogenous transport systems to the blood-brain barrier (BBB) transport of basic and acidic drugs was studied by using a carotid injection technique in rats and an isolated bovine cerebrovascular disease state were compared between the normotensive rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) which have been well established as an animal model with pathogenic similarities to humans. Basic drugs such as eperisone, thiamine and scopolamine inhibited, in a concentration dependent manner the in vivo uptake of $[{^3}H]choline$ through BBB, whereas amino acids and acidic drugs such as salicylic acid and valproic acid did not inhibit the uptake. The uptake of $[^3H]choline$ by B-CAP increased with time and showed a remarkable temperature dependency. The uptake of $[^3H]choline$ by B-CAP showed the very similar inhibitory effects as observed in the in vivo brain uptake, and was competitively inhibited by a basic drug, eperisone. The in vivo BBB uptakes of $[^3H]acetic$ acid and $[^{14}C]salicylic$ acid were dependent on pH of the injectate and the concentration of drugs. Several acidic drugs such such as salicylic acid, benzoic acid and valproic acid inhibited the in vivo uptake of $[^3H]acetic$ acid, whereas amino acid, choline and a basic drug such as eperisone did not inhibit the uptake. The uptake of acetic acid by B-CAP was competitively inhibited by salicylic acid. The permeability surface area product (PS) through BBB for $[^3H]choline$ in SHRSP was significantly lower than that in WKY. The concentration of choline in the brain dialysate in SHRSP was about half of that in WKY, while no significant difference was observed in the plasma concentration of choline between SHRSP and WKY. No significant difference was observed in the transport of monocarboxylic acids, glucose and neutral amino acid through BBB between SHRSP and WKY. From these results, it was concluded that BBB transport system of choline contributes to the transport of basic drugs through BBB, that acidic drugs can be transported via a moncarboxylic acid BBB transport system and that the specific dysfuntion of the BBB choline transport in SHRSP was ascribed to the reduction of the maximum velocity of choline concentration in the brain interstitial fluids.

  • PDF

흰쥐에서 nitrone계 항산화제인 $\alpha$-phenyl-n-tert-butyl nitrone(PBN)의 뇌 투과성 및 체내동태 (The Blood-Brain Barrier Permeability and Pharmacokinetics of Nitrone Based Spin Trapping Agent, $\alpha$-Phenyl-n-tert-Butyl Nitrone (PBN) in Rats)

  • 이나영;강영숙
    • 약학회지
    • /
    • 제46권2호
    • /
    • pp.124-128
    • /
    • 2002
  • The nitrone-based free radical trapping reagent, $\alpha$-phenyl-n-tert-butyl nitrone (PBN) has been proposed as therapeutic agent for stroke. We used this for model drug of development of new drug for neuroprotection. The purpose of this study was to evaluate the blood-brain barrier (BBB) permeability of PBN in Sprague-Dawly (SD) rats. The BBB transport of PBN was investigated in SD rats using internal carotid artery perfusion (ICAP) method at a rate of 4 mι/min for 15 second. We also obtained pharmacokinetic parameters of PBN using single intravenous injection technique. When we estimated BBB permeability of PBN with ICAP method, the brain volume of distribution of PBN was 60.0 $\pm$ 12.0 $\mu\textrm{g}$/ι. The brain uptake of PBN after IV injection at 120 min was 0.15 $\pm$ 0.01%ID/g. The PBN was transported to the brain through the BBB well in rats, because PBN is small molecule (MW 177) and lipid-soluble (log P 1.23) compound.

Nitrone계 항산화제 (PBN)의 뇌에서 혈액으로의 배출과 뇌 수송 특성 (Characterization of the Brain Transport and Brain-to-Blood Efflux of Nitrone Based Antioxidant, PBN)

  • 이나영;강영숙
    • 약학회지
    • /
    • 제47권4호
    • /
    • pp.224-229
    • /
    • 2003
  • We have investigated the transport characteristics of synthetic antioxidant and free radical scavenger, $\alpha$-phenyl-n-tert-butyl nitrone (PBN) at the blood-brain barrier (BBB) by in vitro uptake study in conditionally immortalized rat brain capillary endothelial cell line (TR-BBB). Also, the efflux of PBN from brain to blood is estimated using the brain efflux index (BEI) method. Choline is a charged organic cation, including nitrogen-methyl group and shows the carrier-mediated distribution to the brain. [$^3$H]Choline uptake by TR-BBB cells was significantly inhibited by PBN with $IC_{50}$/ of 1.2 mM, which appears to be due to similar structures between choline and PBN. And, PBN was microinjected into Par2 of the rat brain by BEI method, and was eliminated from the brain with an apparent elimination half-life of about 2 min. Also, [$^3$H]choline efflux was significantly inhibited by PBN using BEI method. In conclusion, the efflux transport of PBN takes place across the BBB and PBN may be transported into the brain and eliminated from the brain by BBB choline transporter.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권1호
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

The Applications and The evaluation Methods for the Brain Uptake and Delivery of Candidates of New Drug

  • Kang, Young-Sook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.90-91
    • /
    • 2002
  • The brain is unique as target for drug delivery because it is an organ with the greatest blood supply, which receives about 20% of the cardiac output in humans and is highly restricted by a tight vascular barrier, the blood-brain barrier (BBB). Since the BBB forms the interface between blood and brain, the biology of the BBB plays a role in multiple disciplines other than pharmacology, physiology, pathology and neurosciences. (omitted)

  • PDF

Genetically engineered brain drug delivery vector through the blood-brain barrier

  • Seo, Kyung-Hee;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.192-192
    • /
    • 1998
  • The blood - brain barrier (BBB) expresses high concentrations of transferrin receptor, and it was revealed that anti-transferrin receptor mouse monoclonal antibody (OX26) undergoes transcytosis through the BBB. This property allows the OX26 to serve as a brain drug delivery vector. In an attempt to produce broadly useful targeting agents, genetic engineering and expression techniques have been used to produce antibody-avidin (AV) fusion protein (OX26 IgG3C$\_$H/3-AV). In the present study we estimated the BBB permeability and stability of genetically engineered vector.

  • PDF

Transport of choline and its relationship to transport of cationic drugs in immortalized rat brain capillary endothelial cell line

  • Park, Hong-Mi;Lee, Kyeong-Eun;Lee, Na-Young;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.106-106
    • /
    • 2003
  • Choline serves critical roles in the CNS both as a precursor of neurotransmitter and as an essential component of membrane phospholipids. The long-term maintenance of brain choline concentration is dependent on choline transport across the blood-brain barrier (BBB), And, we examined to elucidate the characteristics of transport of choline across the BBB using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The [$^3$H]choline in TR - BBB was increased by time dependently, but independent on Na$\^$+/, and the transport process is saturable with Michaelis-Menten constrant, Km of about 26 ${\mu}$M. The uptake of [$^3$H]choline is susceptible for inhibition by various organic cationic compounds including hemicholinium-3, tetraethylammonium chloride (TEA) and $\ell$-carnitine. Also, we investigated the relationship of transport of choline and cationic drugs. The uptake of [$^3$H]choline is inhibited by antioxidant, a-phenyl-n-tert-butyl nitrone (PBN) with IC$\sub$50/ of 1.2 mM. and by Alzheimer's disease therapeutics, such as acetyl $\ell$-carnitine, tacrine and donepezil. Also, choline uptake presented competitive inhibition with PBN, donepezil and acetyl $\ell$-carnitine in Lineweaver-Burk plot. In conclusion, TR-BBB cells express a saturable transport system for uptake of choline, and several cationic drugs may be transported into the brain by BBB choline transporter.

  • PDF