• Title/Summary/Keyword: B16f10

Search Result 1,056, Processing Time 0.03 seconds

Commelina communis Ledeb Inhibits Melanin Synthesis in Alpha-MSH-stimulated B16F10 Cells (압척초추출물의 Alpha-MSH 유도성 멜라닌합성 억제 효과)

  • Kang, Moon Kyung;Lee, Young Eun;Woo, Won Hong;Mun, Yeun Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.5
    • /
    • pp.506-511
    • /
    • 2014
  • Commelina communis Ledeb is a widely used medication for the treatment of antidiabetic, antioxidant and hypoglycemic agent in Korea. Alpha-melanocyte stimulating hormone (${\alpha}$-MSH) is a major factor to stimulate melanin synthesis in the skin. The purposes of this study was to investigate the inhibitory effects of extract from Commelina communis Ledeb (ECC) on ${\alpha}$-MSH-stimulated melanogenesis in B16F10 cells. ECC suppressed melanin synthesis and intracellular tyrosinase activity in B16F10 cells or ${\alpha}$-MSH-induced B16F10 cells in a dose dependent manner. In study on the melanogenic protein expressions, it had especially influence on expressions of tyrosinase and tyrosinase-related protein (TRP-1). Tyrosinase and TRP-1 expressions were gradually decreased in a dose-dependent. Additionally, the extract also decreased the ${\alpha}$-MSH-induced over-expression of tyrosinase and TRP-1. This results show that the anti-melanogenic activity of ECC is correlated with the suppression of tyrosinase and TRP-1 protein expressions in B16F10 cells.

Inhibitory Effects of Saposhnikoviae Radix Extracts on the Melanin Production and Elastase Activity in B16F10 cells (흑색종 세포주에서 멜라닌 생성과 엘라스타제 활성 억제에 미치는 방풍의 효과)

  • Choi, Chan Hun;Wang, Kung The;Cho, Hye Rin;Jeong, Jong Gil;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.296-302
    • /
    • 2014
  • Saposhmikoviae Radix can treat various skin disease by anti-pruitus and anti-inflammatory effects. This study was designed to investigate effects of Saposhmikoviae Radix Extracts(SRE) on skin elasticity and whitening using B16F10 cell lines. In this experiment, We observed effect of SRE on cell viability, inhibition of melanin synthesis and inhibitory effect on tyrosinase and elastase. In results, SRE treated group showed lowered proliferation rates significantly compared to non-treated group. More than SRE $125{\mu}g/m{\ell}$ of treated groups were lower levels of melanin synthesis respectively. SRE did not show inhibitory effect on tyrosinase activities in vitro and in B16F10 cells. Finally, SRE suppressed elastse type I and IV activities in dose-dependent manner in vitro. And SRE also slightly suppressed elastase activities in B16F10 cells. In conclusion, these results suggest that SRE can inhibit melanin synthesis and inhibt elastase activity. So, We suggest that SRE can be maintained skin elasticity or whitening.

Effect of Samultanggamibang of Apoptosis of Melanoma cell (사물탕(四物湯) 가미방(加味方)이 흑색중(黑色腫) 세포고사(細胞枯死)에 미치는 효과(效果))

  • Park, Eun-Jung;Lee, Hai-Ja;Chang, Sung-Jin
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.257-272
    • /
    • 2006
  • Objective : In this study, the ability of Oriental medicine Samultanggamibang(SMTG) to induce apoptosis was investigated in B16F10 melanoma cells. Method : Tetrazolium-based colorimetric assay was performed for cytotoxicity test. Several new assays for the basis of biochemical events associated with apoptosis such as DNA fragmentation by a flow cytometry, caspase-3 activation and PARP cleavage by Western blotting should be carried out potentially useful for the basis of biochemical events associated with apoptosis such as a flow cytometry and caspase-3 activation. Results : (1) The number of B16F10 melanoma cells was less than 30 % after exposure to 1 mg/ml SMTG for 48 h. SMTG increased cytotoxicity of B16F10 melanoma cells in a dose- and time-dependent manner. (2) The percentage of apoptotic cells by flow cytometric analysis of the DNA-stained cells increased to 21 % at 24 h and 25 % at 48 h after treatment with 1 mg/ml SMTG. (3) SMTG-induced apoptosis was accompained by the activation of caspase-3 and the specific proteolytic cleavage of poly-ADP-ribose polymerase. (4) SMTG induces the activation of caspase-3 and the specific proteolytic cleavage of poly-ADP-ribose polymearse and eventually leads to apoptosis through c-Jun NH2-terminal protein kinase (JNK)-dependent manner in B16F10 melanoma cells. Conclusion : SMTG had a strong cytotoxic effect of B16F10 melanoma cells.

  • PDF

Effects of N-acetylphytosphingosine on melanogenesis of B16F10 murine melanoma cells.

  • Park, M. K.;Park, C. S.;Kim, J. W.;R. M. Ahn;Y. S. Yoo;S. Y. Yi
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.241-242
    • /
    • 2003
  • The effects of N-acetylphytospingosine(NAPS), one of the phytospingosine derivatives, on melanogenesis of B 16F 1 0 mouse melanoma cell lines were investigated. We assessed the effect of NAPS on the depigmentation of B16F10 cells. The melanin content of cells was significantly reduced by NAPS. We examined the inhibitory effect of NAPS on tyrosinase activity using L-dopa as a substrate and the results showed that tyrosinase activity was inhibited in a does-dependent manner. The mRNA level of tyrosinase as well as that of tyrosinase related protein-l (TRP-l) and tyrosinase related protein-2 (TRP-2) genes were not affected by NAPS based on a reverse transcription-polymerase chain reaction (RT-PCR) assay. We also performed a Western blotting analysis using anti-tyrosinase antibody. It showed that there is no change in tyrosinase protein level after treatment of NAPS. These results suggest that the depigmenting mechanism of NAPS in B16F10 melanoma cells involves inhibition of melanosomal tyrosinase activity, rather than the mRNA expression or protein level of tyrosinase.

  • PDF

Effect on Melanogenic Protein Expression of Acanthoic Acid isolated from Acanthopanax koreanum in Murine B16 Melanoma

  • Ham, Young-Min;Park, Soo-Yeong;Kim, Kil-Nam;Oh, Dae-Ju;Yoon, Weon-Jong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16-16
    • /
    • 2011
  • Melanogenesis is a well-known physiological response of human skin that may occur because of exposure to ultraviolet light, for genetic reasons, or due to other causes. In our effectors to find new skin lightening agents, acanthoic acid (AA) was investigated for its ability to inhibit melanogenesis. The effects of AA isolated from A.koreanumun the expression of $\alpha$-MSH-induced melanogenic factors (tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and MITF (microphthalmla-associated transcriptional factor)) were investigated in murine B16F10 melanoma cells. The results indicate that AA was an effective inhibitor of melanogenesis in B16F10 cells. To elucidate the mechanism of the effect of AA on melanogenesis, we performed Western blotting for melanogenic proteins. AA inhibited melanogenic factors (tyrosinase, TRP-1, TRP-2) expressions. In this study, we also confirmed that AA decreased the protein level of MITF proteins, which would lead to a decrease of tyrosinase and related genes in B16F10 melanoma cells. In order to apply AA to the human skin, the cytotoxic effects of the AA were determined by MTT assays using human keratinocyte HaCaT cells. Based on these results, we suggest that AA be considered possible anti-melanogenic agent and might be effective against hyperpigmentation disorders for the topical application.

  • PDF

Adenine Inhibits B16-F10 Melanoma Cell Proliferation

  • Silwal, Prashanta;Park, Seung-Kiel
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2020
  • Adenine, a purine base, is a structural component of essential biomolecules such as nucleic acids and adenine nucleotides. Its physiological roles have been uncovered. Adenine suppresses IgE-mediated allergy and LPS-induced inflammation. Although adenine is known to inhibit lymphocyte proliferation, the effect of adenine to melamoma cells is not reported. Here, we investigated the growth inhibitory effects of adenine on B16-F10 mouse melanoma cells. Adenine suppressed the proliferation of B16-F10 cells in dose-dependent manner with the maximal inhibitory dose of 2 mM. Adenine treatment induced cell death molecular markers such as PARP and caspase 3 cleavages. Pan-caspase inhibitor z-VAD dramatically rescued the cell death molecular markers, cell proliferation recovered marginally. These results provide the possibility of adenine to be used as an anti-tumor agent.

Inhibitory Effect of Melanogenesis by 5-Pentyl-2-Furaldehyde Isolated from Clitocybe sp.

  • Kim, Young-Hee;Choo, Soo-Jin;Ryoo, In-Ja;Kim, Bo-Yeon;Ahn, Jong-Seog;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.814-817
    • /
    • 2012
  • In the continued search for melanogenesis inhibitors from microbial metabolites, we found that the culture broth of Clitocybe sp. MKACC 53267 inhibited melanogenesis in B16F10 melanoma cells. The active component was purified by solvent extraction, silica gel chromatography, Sephadex LH-20 column chromatography, and finally by preparative HPLC. Its structure was determined as 5-pentyl-2-furaldehyde on the basis of the UV, NMR, and MS spectroscopic analysis. The 5-pentyl-2-furaldehyde potently inhibited melanogenesis in B16F10 cells with an $IC_{50}$ value of 8.4 ${\mu}g/ml$, without cytotoxicity.

The inhibitory effect on the melanin synthesis in B16/F10 mouse melanoma cells by Sasa quelpaertensis leaf extract (B16/F10 생쥐 흑색종 세포에서 제주조릿대 추출물의 멜라닌 합성 저해 효과)

  • Yoon, Hoon-Seok;Kim, Jeong-Kook;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.873-875
    • /
    • 2007
  • Effects of hot-water extract from Sasa quelpaertensis leaf (HWES) on melanogenesis were investigated in B16/F10 mouse melanoma cells. HWES inhibited cellular tyrosinase activity and melanin biosynthesis in a dose-dependent manner. Western blotting analysis showed that HWES dose-dependently inhibited tyrosinase and tyrosinase related protein-1 expression. Also, HWES suppressed sustained ERK activation in a concentration-dependent manner, suggesting that HWES inhibits the melanin biosynthesis through the suppressive effect against pathway involving sustained ERK activation.

Adenine Induces Apoptosis Markers in B16-F10 Melanoma Cells: Inhibiting Akt and mTOR and Increasing Bax/Bcl-2 Ratio

  • Seung-Kiel Park
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.201-205
    • /
    • 2023
  • Free adenine is mainly made during the polyamine synthesis in proliferating cells. Adenine molecule itself acts biological modulator in inflammation and cell death. In the previous report, we showed that adenine induces apoptotic cell death of B16-F10 mouse melanoma cells by eliciting of PARP and caspase 3 cleavages. In this study, we examined the adenine effect on other apoptotic molecules affecting caspase activation in B16-F10 melanoma cells. Adenine treatment make pro-apoptotic molecules active states. Bax/Bcl-2 ratio was increased and phosphorylation of mTOR and Akt was decreased in a dose dependent manner. These results showed the possibility that Bax/Bcl-2, Akt and mTOR are engaged in adenine induced apoptosis of melanoma cells.

Inhibition of Melanin Production and Tyrosinase Expression of Crocetin Derivatives from processed Gardenia jasminoides

  • Hong, Yun Jung;Yang, Ki Sook
    • Natural Product Sciences
    • /
    • v.19 no.3
    • /
    • pp.206-214
    • /
    • 2013
  • The crocetin derivatives, crocin (1), gentiobiosyl glucosyl crocetin (3), and mono-gentiobiosyl crocetin (4) were isolated from the fruit of Gardenia jasminoides (Gj) and crocetin (2) from the processed fruit of Gj (PGj) by column chromatography. Their structures were determined on the basis of spectroscopic methods including IR, MS, and NMR (1D and 2D). These compounds were evaluated for their inhibition activity on melanin production in ${\alpha}$-MSH (melanocyte stimulating hormone) activated B16F10 cells. Compounds 1 - 4 reduced melanin content in a dose-dependent manner at concentrations of 20 - 60 uM. They also suppressed tyrosinase protein and m-RNA expressions dose dependently, assayed by western blot analysis, and RT-PCR experiment in B16F10 murine melanoma cells.