• Title/Summary/Keyword: B.M(Base Metal)

Search Result 54, Processing Time 0.262 seconds

Liquid Phase Diffusion Bonding Procedure of Rene80/B/Rene80 System -Liquid Phase Diffusion Bonding Using B Powder Coating Method (Rene80/B/Rene80계의 액상확산 접합과정 -B분말 도포법을 이용한 액상확산접합)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.132-138
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using boron(B) as an insert material, where B has high diffusivity and higher melting point as an insert material. Bonding procedure and bonding mechanism of Rene80/B/Rene80 joint were investigated. As results, liquid metal was produced by solid state reaction between base metal and insert material on bonding zone. The liquid metal was produced preferentially at the grain boundary. Except for production of liquid metal, other bonding procedure was nearly same as TLP(Transient Liquid Phase) bonding. Bonding time, however, was reduced compared to prior result of TLP bonding. By bonding S.4ks at l453K, Ren80/B/Rene80 joint was isothermally solidified and homogenized where thickness of insert material was 7.5.mu.m.

  • PDF

Laser Welding of AZ31B-H24 Mg Alloy with AZ61 Filler Wire (AZ61 필러 와이어를 첨가한 AZ31B-H24 마그네슘 합금의 레이저 용접)

  • Ryu, Chung-Sun;Bang, Kook-Soo;Lee, Mok-Young;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.54-58
    • /
    • 2008
  • Laser welding with AZ61 filler wire was carried out to improve formability though reduction of porosity and formation of under fill bead. Optimum welding condition and mechanical properties of butt joint for $400{\times}500{\times}1.3mm$ magnesium sheets were studied. Optimal welding conditions of laser power, welding speed, and defocusing length are 1000W, 3m/min, and 2mm, respectively. Results of tensile test indicated that both tensile strength and elongation of specimens welded with filler wire were improved at room temperature because of reduction of porosity and under-filled bead formation in addition to the precipitation hardening and microstructure refinement by Al-Mn and Mg-Al-Zn precipitates. At elevated temperature of $200{\sim}350^{\circ}C$, fracture location of tensile specimen was shifted from weld metal to base metal, indicating less softening of weld metal than base metal.

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H.;Efil, Kursat;El-Nasr, T.A. Seif;Abbas, Osama A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.222-235
    • /
    • 2017
  • First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.

Fatigue Properties of Ti-Ni Shape Memory Alloy Wire Welded by Nd: YAG Laser

  • Kim, Y.S.;Kim, J.D.;Kil, B.L.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • The welded specimens were made by butt welding of the 2 wires of 50mm length using the pulsed YAG laser. The laser welded wires were tested for investigating the shape memory effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was Investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

Metallurgical Study of Microconstituents in Transient Liquid Phase Bended Joints of Ni Base Superalloy (Ni기 초내열합금의 액상확산접합부 생성상의 금속조직학적 검토)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2001
  • The metallurgical study of microconstituents in transient liquid phase bonded joints of Ni-base single crystal superalloys, CMSX-2 and CMSX-4 was investigated employing MBF-80 insert metal. TLP bonding of specimens was carried out at 1,373~1,523K for 0~19.6ks in vacuum. Three types of microconstituents ; needle-like constituent, dot-like constituent and abnormal shape constituent were formed in the bonded interlayer during TLP bonding operation. All these microconstituents were identified as boride. Microconstituents contain a large percentage of Cr in the early stage of bonding. As increasing the holding time, the amount of Cr was decreased and the amount of W, Co and Re were increased. From the analysis results of electron diffraction pattern by TEM, composition of elements in microconstituents were into MBlongrightarrowM$_{5}$B$_3$longrightarrowM$_2$B type with the increased in holding time. It can be explained by the fact that the relative amount of boron in microconstituents was decreased when the holding time was increased.d.

  • PDF

Development of Creep Properties Evaluation Technique for Steel Weldment of Power Plant (발전설비 강 용접부의 크리프 특성 평가 기술 개발)

  • Lee, Dong-Hwan;Jeoung, Young-Hun;Baek, Seung-Se;Ha, Jeong-Soo;Song, Gee-Hook;Lee, Song-In;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.180-185
    • /
    • 2001
  • In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation.

  • PDF

The Effects of Various Metal Surface Treatments on the Shear Bond Strength between Titanium Denture Base and Relined Resins (타이타니움 의치상에 대한 다양한 금속표면처리제의 적용이 첨상레진과의 결합강도에 미치는 영향)

  • Eun, Jun-Young;Cho, In-ho;Lee, Jong-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to evaluate the effect of various metal surface treatments on the shear bond strength between titanium denture base and relined resins. The surfaces of commercially pure(cp) titanium were sandblasted with $50{\mu}m$ $Al_2O_3$ for 20 seconds and each group was treated with MR $Bond^{(R)}$, Alloy $Primer^{(R)}$, and Super-Bond $C&B^{(R)}$ accordingly. The specimens were completed by application of relining resins. The specimens were stored in room temperature. And the shear bond strength of the specimens were measured with the MTS universal testing $machine^{(R)}$. The results were as follows: 1. In comparison with the relining materials, $Kooliner^{(R)}$ groups showed statistically higher shear bond strength than Tokuyama Rebase $II^{(R)}$ groups(p<0.05). 2. Comparing shear bond strength, according to surface treatment, Super-bond $C&B^{(R)}$ groups showed the highest bond strength and were significantly higher than the other three groups(p<0.05). Alloy $Primer^{(R)}$ groups showed no significant difference with the MR $Bond^{(R)}$ groups, but was significantly higher than the sandblasting-only groups(p<0.05). 3. Comparing surface treatment in each groups, for two types of relining resin, the group which applies $Kooliner^{(R)}$ and Super-bond $C&B^{(R)}$ showed the highest bond strength and showed significant difference compared to the other groups(p<0.05). When using Tokuyama Rebase $II^{(R)}$, Super-bond C&B group showed the highest bond strength, but there were no significant difference compared to the Alloy $Primer^{(R)}$ group. In this limited study, applying $Kooliner^{(R)}$ and Super-Bond $C&B^{(R)}$ after sandblasting is considered to be advantageous for relining of titanium base dentures.

Fatigue Behavior of Friction Welded Material of Domestic Dissimilar Steels - In Case of SM 45C to SUS304 Friction Welded Steel - (國산 異種鋼을 摩擦壓接한 경우의 疲勞擧動)

  • 송삼홍;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.953-962
    • /
    • 1987
  • Domestic dissimilar structural steels, SM 45 C and SUS304 were friction welded under optimal welding condition and the micro-artificial holes were drilled at SM 45 C base metal, SM 45 C HAZ, welded zone, SUS 304 HAZ, and SUS 304 base metal for fatigue behavior tests. In this study, the fatigue limit and the behavior of micro-crack propagation, crack propagation rate, and its dependency on stress intensity factor under the low stress level and high stress level of bending stress have been investigated. The results obtained are as follows. (1) The fatgiue strength of the portion of SM45C B.M., SM45C HAZ, welded zune, SUS304 HAZ and SUS304 B.M. on notched friction welded specimens are 20 kgf/mm$^{2}$, 32 kgf/mm$^{2}$, 27kgf/mm$^{2}$, 29kgf/mm$^{2}$, and 29kgf/mm$^{2}$, respectively. (2) The fatigue strength of welded zone of unnotched and notched specimens are 32.5kgf/mm$^{2}$, and 27kgf/mm$^{2}$, respectively. (3) Micro-crack initiation in the welded zone, HAZ, and each base metals occurrs simultaneously in front and rear of micro-hole tips in the view of the rotational directions. (4) Fatigue crack propagates more slowly in the welded zone than in another protions of specimen, regardless of the magnitude of the stress level. (5) Fatigue crack propagation rates were plotted as a function of stress intensity range. The value of m in the equation da/dN=C(.DELTA.K)$^{m}$ was found to range from 2.09-2.55 in this study.

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF