• Title/Summary/Keyword: B. cepacia

Search Result 48, Processing Time 0.02 seconds

Field Control of Phytophthora Blight of Pepper Plants with Antagonistic Rhizobacteria and DL-$\beta$-Amino-n-Butyric Acid

  • Lee, Jung-Yeop;Kim, Beom-Seok;Lim, Song-Won;Lee, Byung-Kook;Kim, Choong-Hoe;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • Treatment with antagonistic rhizobactera Burkholderia cepacia strain N9523 or an inducer of resistance DL-$\beta$-amino-n-butyric acid (BABA) effectively inhibited Phytophthora capsici infection on pepper plants in artificially infested pots. Treatment with BABA alone at $1,000\mu\textrm{g}$/ml or together with B. cepacia in combination induced a strong protection from the Phytophthora disease in the greenhouse. In artificially infested field, protection of pepper plants against the Phytophthora epidemic by BABA treatment was maintained at a considerable level. In contrast, soil drench with the antagonist B. cepacia alone, or in combination with BABA did not suppress the Phytophthora epidemic in the field. Mortality of pepper plants caused by P. capsici infection was significantly reduced by treatment with the antagonist Pseudomonas aeruginosa strain 950923-29 and BABA (12-29% plants diseased) relative to the untreated control (41-91% plants diseased) in the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA also resulted in high levels of protection against Phytophthora blight in pepper plants. In the plastic filmhouse test, the average percentage of plants diseased was significantly low relative to the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA in combination was most effective in suppressing the Phytophthora disease in field and plastic filmhouse.

  • PDF

Evaluation of Biocatalyst and Bioreactor System for the Continuous Treatment of Trichloroethylene (미생물 생촉매를 이용한 Trichloroethylene 연속처리용 생물반응기 시스템 평가)

  • 이은열
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.970-975
    • /
    • 2003
  • Microbial trichloroethylene (TCE) degradation using trickling biofilter (TBF) is a cost-effective treatment method, in which monooxygenase (MO) fortuitously transforms TCE via cometabolism. Simple TBF, however, could not be stably operated for long-term treatment of TCE due to the contradictory characteristics of cometabolism. In this paper, microbial biocatalyst and biofilm reactor system, a two-stage continuous stirred tank reactor (CSTR)/TBF system using Burkholderia cepacia G4 and Methylosinus trichosporium OB3b, are evaluated for the long-term continuous treatment of TCE. The maximum TCE elimination capacities were in the range of 28 and 525 mg TCE/1$.$day. The reactor systems were stably operated for more than 3∼12 months.

Nucleotide Sequence and Homology Analysis of phnC Gene Encoding Glutathione S-transferase from Pseudomonas sp.DJ77 (Pseudomonas sp. DJ77에서 Glutathione S-transferase를 암호하는 phnC 유전자의 염기서열과 상동성 분석)

  • 우희종;신명수;김성재;정용제;정안식;박광균;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.86-91
    • /
    • 1997
  • Pseudomonas sp. DJ77로부터 클로닝된 glutathione S-transferase 유전자(phnC)의 염기서열을 결정하였다. 603bp의 open reading frame(ORF)이 존재하였고 개시코돈 앞에서 Shine-Dalgarno sequence를, 종결코돈 뒤에서는 terminator sequence를 발견하였다. phnC 유전자에서 만들어지는 phnC 단백질은 21,416 Da으로 SDS-polyacrylamide gel 전기영동 결과와 일치하였다. PhnC는 Bulkholderia cepacia LB400, Cycloclasticus oligotrophus RB1의 GST와 각각 53.7%, 49%의 높은 상동성을 나타냈다. 아미노산 서열의 상동성과 필수잔기들의 존재유무로 판단할 때 PhnC GST는 theta class GSTs와 진화적으로 유연관계가 높았지만 alpha, mu, pi, sigma class GSTs에서 구조적, 기능적으로 중요하다고 알려진 아미노산 잔기들이 PhnC GST에도 보존되어 있었다. 또한, phnC 유전자의 위치가 C. oligotrophus RB1, B. cepacia LB400 등의 GST 유전자 위치와 유사하다는 점에서 PhnC 효소는 난분해성 방향족 탄화수소의 분해에 관여하는 것으로 생각된다.

  • PDF

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

Mutations Affecting Cellular Levels of Cobalamin (Vitamin B12) Confer Tolerance to Bactericidal Antibiotics in Burkholderia cenocepacia

  • Dongju Lee;Jongwook Park;Heenam Stanley Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1609-1616
    • /
    • 2024
  • The Burkholderia cepacia complex (Bcc) consists of opportunistic pathogens known to cause pneumonia in immunocompromised individuals, especially those with cystic fibrosis. Treating Bcc pneumonia is challenging due to the pathogens' high multidrug resistance. Therefore, inhalation therapy with tobramycin powder, which can achieve high antibiotic concentrations in the lungs, is a promising treatment option. In this study, we investigated potential mechanisms that could compromise the effectiveness of tobramycin therapy. By selecting for B. cenocepacia survivors against tobramycin, we identified three spontaneous mutations that disrupt a gene encoding a key enzyme in the biosynthesis of cobalamin (Vitamin B12). This disruption may affect the production of succinyl-CoA by methylmalonyl-CoA mutase, which requires adenosylcobalamin as a cofactor. The depletion of cellular succinyl-CoA may impact the tricarboxylic acid (TCA) cycle, which becomes metabolically overloaded upon exposure to tobramycin. Consequently, the mutants exhibited significantly reduced reactive oxygen species (ROS) production. Both the wild-type and mutants showed tolerance to tobramycin and various other bactericidal antibiotics under microaerobic conditions. This suggests that compromised ROS-mediated killing, due to the impacted TCA cycle, underlies the mutants' tolerance to bactericidal antibiotics. The importance of ROS-mediated killing and the potential emergence of mutants that evade it through the depletion of cobalamin (Vitamin B12) provide valuable insights for developing strategies to enhance antibiotic treatments of Bcc pneumonia.

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

Purification and Characterization of Catechol 2,3-Dioxygenase from Recombinant Strain E. coli CNU312. (재조합균주 E. coli CNU312가 생산하는 Catechol 2,3-Dioxygenase의 정제 및 특성)

  • 임재윤;최경호;최병돈
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Catechol 2,3-dioxygenase was purified from recombinant strain E. coli CNU312 carrying the tomB gene which was cloned from toluene-degrading Burkholderia cepacia G4. The purification of this enzyme was performed by acetone precipitation, Sephadex G-75 chromatography, electrophoresis and electro-elution. The molecular weight of native enzyme was about 140.4 kDa and its subunit was estimated to be 35 kDa by SDS-PAGE. It means that this enzyme consists of four identical subunits. This enzyme was specifically active to catechol, and$K_(m)$ value and $V_(max)$value of this enzyme were 372.6 $\mu$M and 39.27 U/mg. This enzyme was weakly active to 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol, but rarely active to 2,3-DHBP. The optimal pH and temperature of the enzyme were pH 8.0 and $40^{\circ}C$. The enzyme was inhibited by $Co^(2+)$, $Mn^(2+)$, $Zn^(2+)$, $Fe^(2+)$, $Fe^(3+)$, and $Cu^(2+)$ ions, and was inactivated by adding the reagents such as N-bromosuccinimide, and $\rho$-diazobenzene sulfonic acid. The activity of catechol 2,3-dioxygenase was not stabilized by 10% concentration of organic solvents such as acetone, ethanol, isopropyl alcohol, ethyl acetate, and acetic acid, and by reducing agents such as 2-mercaptoethanol, dithiothreitol, and ascorbic acid. The enzyme was inactivated by the oxidizing agent $H_(2)$$O_(2)$, and by chelators such as EDTA, and ο-phenanthroline.

  • PDF

Isolation and Characterization of Burkholderia cepacia EB215, an Endophytic Bacterium Showing a Potent Antifungal Activity Against Colletotrichum Species (탄저병균에 길항력이 우수한 식물내생세균 Burkholderia cepacia EB215의 분리 및 특성 규명)

  • Park Ji Hyun;Choi Gyung Ja;Lee Seon-Woo;Jang Kyoung Soo;Lim He Kyoung;Chung Young Ryun;Cho Kwang Yun;Kim Jin-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • In order to develop a new microbial fungicide using endophytic bacteria for the control of anthracnoses occurring on various crops, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth medium, their antifungal activities were tested for in vivo antifungal activity against cucumber anthracnose caused by Colletotrichum orbiculare. As the results, liquid cultures of 28 strains showed potent antifungal activities more than $90\%$ against cucumber anthracnose. At 3-fold dilutions of liquid cultures, 18 strains inhibited the development of cucumber anthracnose of more than $70\%$. They were further tested for in vivo antifungal activity against red pepper anthracnose caused by C. coccodes and in vitro antifungal activity against C. acutatum, a fungal agent causing red pepper anthracnose. Among 18 strains, a bacterial strain EB215 isolated from cucumber roots displayed the most potent antifungal activity against Colletotrichum species. It was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, Biolog test and 16S rDNA gene sequence. It also controlled effectively the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), tomato gray mold (Botrytis cinerea), and tomato late blight (Phytophthora infestans). Studies on the characterization of antifungal substances produced by B. cepacia EB215 are in progress.

Growth Characteristics and Optimal Culture Conditions of PVA-Degrading Strains (Polyvinyl Alcohol분해자화균의 성장특성과 최적 배양조건)

  • 김정목;조무환조윤래정선용
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.363-368
    • /
    • 1991
  • PVA degrading bacteria were isolated from water system, and identified as Pseudomonas cepacia and Pseudmonas pseudomallei, which were named as Pseudomonas sp. G5Y and Pseudomonas sp. PW. It was found out that those two kinds of bacteria have a symbiotic relationship to degrade PVA. For the mixed culture of these bacteria, the optimal conditions of pH, temperature, nitrogen source, and polymerization degree of PVA were found to be 7.5, $35^{\circ}C$, ammonium sulfate, and 500, respectively. Also, the growth of these bacteria was promoted by trace elements such as vitamin B1, B12, pyridoxine, and p-aminobenzoate, respectively. The specific growth rate of mixed bacteria was inhibited when the concentration of PVA was more than 20g/l. The substrate inhibition kinetics of the mixed culture was $${\mu}=\frac{0.065S}{2.56+S+(S^2/156}hr^{-1}$

  • PDF

Effects of Bacillus and Endospore Germinations on Organic Matter Removal (Bacillus와 내생포자 발아가 유기물 제거에 미치는 효과)

  • Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.169-175
    • /
    • 2007
  • The Bio Best Bacillus(B3) and Rotating Activated Bacillus Contactor(RABC) processes, in which Bacillus strains are predominating, are reported to remove nitrogen and phosphorus as well as organic matter effectively. Nevertheless the nutrient removal characteristics of the Bacillus strains have not been studied in detail so far. This study investigated the organic and nutrient removal by Bacillus strains, Bacillus megaterium(KCTC 3007), Paenibacillus polymyxa(KCTC 3627), and Bacillus sp. A12, C21, F12, and L1(isolated from a B3 process), by incubating the strains in 0.2% nutrient broth at $30^{\circ}C$. Burkholderia cepacia(KCTC 2966), a common activated sludge organism, was used as a reference species for comparison. Although the degradation rate was affected by the population sire, the specific removal rates of organic matter by Bacillus strains were greater by $2\sim5$ times than that of Burkholderia. In particular, the culture bottles inoculated with the endospores of Bacillus megaterium and Bacillus sp. C21, F12, and N12 showed significantly higher degradation rate than those of vegetative cells.