• 제목/요약/키워드: B-spline motion

검색결과 26건 처리시간 0.023초

A Sweep Surface Based on Bivariate B-spline Motion

  • Yoon, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.1026-1039
    • /
    • 2014
  • We present a new method for generating sweep surfaces using bivariate B-spline motion. The sweep surface is defined as the trace of a single point under bivariate B-spline motion. Direct manipulation of the sweep surface is achieved by controlling its motion components while producing various editing effects. We demonstrate the effectiveness of our technique by modeling and deforming various three-dimensional shapes.

3D Animation Authoring Tool Based On Whole Body IK and Motion Editing

  • Ju, Woo-Suk;Im, Choong-Jae
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.869-874
    • /
    • 2008
  • The work of creating character motion needs the higher professional technology and sense and the creating work of realistic and natural motion possess the most part of production term. In this paper we introduce the easy and convenient 3D animation authoring tool which makes the motion based on whole-body inverse kinematics and motion editing function. The proposed 3D animation authoring tool uses the forward kinematics using quaternion and whole-body inverse kinematics to determine the rotation and displacement of skeleton. Also, it provides the motion editing function using multi-level B-spline with quasi-interpolant. By using the proposed tool, we can make 3D animation easily and conveniently.

  • PDF

B 스플라인 고차 패널법을 적용한 부유체 운동해석 (Application of the B-Spline Based High Order Panel Method to the Floating Body Dynamics)

  • 안병권;유재문;이현엽;이창섭
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.25-30
    • /
    • 2008
  • A B-spline based high order panel method was developed for the motion of bodies in an ideal fluid, either of infinite extent or with a free boundarysurface. In this method, both the geometry and the potential are represented by the B-spline, which guarantees more accurate results than most potential based low order methods. In the present work, we applied this B-spline based high order method to the radiation problem of floating bodies. The boundary condition on the free surface was satisfied by adopting a Kelvin-type Green function and irregular frequencies were removed by placing additional control points on the free surface surrounding the body. The numerical results were validated by comparison with existing numerical and experimental results.

A Study on Fuzzy Wavelet Basis Function for Image Interpolation

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.266-270
    • /
    • 2004
  • The image interpolation is one of an image preprocessing process to heighten a resolution. The conventional image interpolation used much to concept that it put in other pixel to select the nearest value in a pixel simply, and use much the temporal object interpolation techniques to do the image interpolation by detecting motion in a moving picture presently. In this paper, it is proposed the image interpolation techniques using the fuzzy wavelet base function. This is applied to embody a correct edge image and a natural image when expand part of the still image by applying the fuzzy wavelet base function coefficient to the conventional B-spline function. And the proposal algorithm in this paper is confirmed to improve about 1.2831 than the image applying the conventional B-spline function through the computer simulation.

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.

다양한 지형에서의 걷기와 달리기 동작의 효율적 생성 (An Efficient Generation of Walking and Running Motion on Various Terrains)

  • 송미영;조형제
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.187-196
    • /
    • 2006
  • 대부분의 3차원 캐릭터 애니메이션에서는 모션 캡쳐 장비를 통해서 포착된 동작 데이터를 이용하여 다양한 지형상에서 캐릭터의 이동 동작을 표현한다. 이러한 동작 포착 데이터는 실제 사람과 같이 움직이는 동작들을 자연스럽게 표현할 수 있으나, 만약 다양한 지형에 대해 움직이는 동작을 표현할 경우, 지형의 유형에 따라 모든 동작을 캡쳐하여야 하고, 얻어진 동작 데이터를 다른 유형의 캐릭터에 적용할 경우 동작 데이터를 다시 얻거나 기존 동작 데이터를 재편집해야 하는 어려움이 있다. 따라서 본 연구에서는 평지면, 경사면, 계단면 그리고 굴곡면 등 다양한 지형에서의 적응적인 걷기, 달리기의 이동 동작을 생성하기 위한 통합적 생성 방법을 제안한다. 이 방법에서는 캐릭터의 신장이나 걷는 속도 걸음폭 등의 적은 매개변수들을 사용하여 이동 동작을 생성할 수 있다. 관절들의 위치나 각도는 역운동학(Inverse Kinematics)방법으로 계산하고, 골반과 이동하는 다리의 움직임 궤적 산출은 큐빅 스플라인 곡선을 활용한다. 또한 제안된 방법을 통해서 다양한 실제 캐릭터에 적용하여 이동 동작을 확인한다.

로봇팔의 최적 기하학적 경로 및 시간최소화 운동 (Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm)

  • 박종근;한성현;김태한;이상탁
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF

침투성장거리를 이용한 로봇팔의 장애물회피 최적운동 (Obstacle-Free Optimal Motions of a Manipulator Arm Using Penetration Growth Distance)

  • 박종근
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.116-126
    • /
    • 2001
  • This paper suggests a numerical method to find optimal geometric path and minimum-time motion for a spatial 6-link manipulator arm (PUMA 560 type). To find a minimum-time motion, the optimal geometric paths minimizing 2 different dynamic performance indices are searched first, and the minimum-time motions are searched on these optimal paths. In the algorithm to find optimal geometric paths, the objective functions (performance indices) are selected to minimize joint velocities, actuator forces or the combinations of them as well as to avoid one static obstacle. In the minimum-time algorithm the traveling time is expressed by the power series including 21 terms. The coefficients of the series are obtained using nonlinear programming to minimize the total traveling time subject to the constraints of velocity-dependent actuator forces.

  • PDF

로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색 (Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics)

  • 박종근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

Efficient Generation of Spatiotemporal Images for Leukocyte Motion Detection in Microvessels

  • Kim, Eung Kyeu;Jang, Byunghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권2호
    • /
    • pp.76-84
    • /
    • 2017
  • This paper presents an efficient method for generating spatiotemporal images in order to detect leukocyte motion in microvessels. Leveraging the constraint that leukocytes move along the contour line of the blood vessel wall, our proposed method efficiently generates spatiotemporal images for leukocyte motion detection. To that end, translational motion caused by in vivo movement is first removed by a template matching method. Second, the blood vessel region is detected by an automatic threshold selection method in order to binarize temporal variance images. Then, the contour of the blood vessel wall is expressed via B-spline function. Finally, using the detected blood vessel wall's contour as an initial curve, the plasma layer for the most accurate position is determined in order to find the spatial axis via snake, and the spatiotemporal images are generated. Experimental results show that the spatiotemporal images are generated effectively through comparison of each step with three images.