• Title/Summary/Keyword: B-doped

Search Result 491, Processing Time 0.027 seconds

On Electroless Plating and Double Sided Buried Contact Silicon Solar Cells

  • Ebong, A.U.;Kim, D.S.;Lee, S.H.;Honsberg, C.B.
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.568-575
    • /
    • 1996
  • The double sided buried contact(DSBC)silicon solar cell processing requires doping of the rear and front grooves with boron and phosphorus respectively. The successful electroless plating of these grooves with the appropriate metals haave been found to depend on the boron conditions for the rear fingers. However, an increased understanding of electroless plating has removed this restriction. Thus the DSBC cells using different boron conditions can be electrolessly plated with ease. This paper presents the recent work done on metallizing the double sided buried contact silicon solar cells with heavily doped boron grooves. The cells results indicate that, the heavier the boron grooves, the poorer the cell performance because of the probable higher metal contact recombination associated with boron grooves.

  • PDF

Estimation of the Ratio of Nonlinear Optical Tensor Components by Measuring Second Harmonic Generation and Parametric Down Conversion Outputs in a Single Periodically Poled LiNbO3 Crystal

  • Kumar, CH. S.S. Pavan;Kim, Jiung;Kim, Byoung Joo;Cha, Myoungsik
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.606-611
    • /
    • 2018
  • Measurement of the nonlinear optical coefficients is not an easy task since it requires complicated experimental setup and analysis. We suggest an easy way to estimate the relative nonlinear optical tensor components by direct measurement of the output powers of the second harmonic generation and spontaneous parametric down conversion experiments. The experiments were done in quasi-phase-matched type-0 as well as type-1 interactions at similar pump wavelengths in a 5% MgO-doped periodically poled $LiNbO_3$ crystal to obtain the ratio of the nonlinear optical tensor components $d_{33}/d_{31}$ in each experiment. The obtained ratios were then compared with the previously ascertained values [J. Opt. Soc. Am. B, 14, 2268-2294 (1997)].

A Study on the Fabrication and Physical Properties of $Ca_2SiO_4$:La Thermoluminescent Phosphors ($Ca_2SiO_4$: La 열형광체 제작과 물리적 특성에 관한 연구)

  • Kim, Choung-Mi;Seo, Mi-Kyong
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • The $Ca_2SiO_4$ phosphors doped by La with 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1.0 wt% concentration were prepared by sintering at $1000^{\circ}C$ for 90 minutes in N2 atmosphere. The phosphors were ground in powdered form and were grouped in $100{\mu}m$ size, then the samples had been exposed to low energy X-ray and UV light. The TL glow curves were measured by heating the phosphors at $10^{\circ}C/s$ rate. There was no significantly meaningful correlation between the TL intensity and the doping level. The intensities of the TL peak measured from X-ray irradiated samples doped with 0.1 wt% were relatively strong. The activation energy and the frequency factor were 0.434 ~ 0.516 eV and 0.5 ~ 0.56, respectively. The intensities of the TL peak measured from UV irradiated samples doped with 0.3 wt% were relatively strong. The activation energy and frequency factor were 0.415 ~ 0.477 eV and 0.5 ~ 0.53, respectively. The TL process were found to be the 2nd order for both X-ray and UV irradiation. The TL intensity was increased linearly with the increase of the radiation dose. In summary, the $Ca_2SiO_4 phosphors developed in this study showed good TL characteristics at low energy X-ray and UV light. We believe they will be used as TLDs in near future for personal and environmental radiation detection dosimetry.

Effect of WO3 or Ga2O3 Addition on the Phase Evolution and Properties of Y2O3-Doped AlN Ceramics (Y2O3-AlN 세라믹스의 생성상 및 물성에 미치는 WO3 및 Ga2O3의 첨가효과)

  • Shin, Hyunho;Yoon, Sang-Ok;Kim, Shin;Hwang, Injoon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2013
  • The effect of a $WO_3$ or $Ga_2O_3$ addition on the densification, phase evolution, optical reflectance, and elastic and dielectric properties of $Y_2O_3$-doped AlN ceramics sintered at $1800^{\circ}C$ for 3 h is investigated. The investigated compositions of the additives are 4.5 wt% $Y_2O_3$ (YA), 3.5 wt% $Y_2O_3$-1.0 wt% $Ga_2O_3$ (YGA), and 3.5 wt% $Y_2O_3$-1.0 wt% $WO_3$ (YWA). $YAlO_3$ and $Y_4Al_2O_9$ form as the secondary phases in all of the investigated compositions, whereas $W_2B$ appears additionally in the YWA. In the YGA, Ga is detected in the AlN grains, indicating that the dissolution of $Ga_2O_3$ into the AlN lattice occurs. The addition of $WO_3$ blackens the specimen more significantly than that of $Ga_2O_3$ does. In all of the investigated specimens, the linear shrinkage and the apparent density are above 20 percent and in the range of 3.34-3.37 $g/cm^3$, respectively. The elastic modulus, Poisson's ratio, the dielectric constant, and the dielectric loss are in the ranges of 335-368 GPa, 0.146-0.237, 8.60-8.63, $2.65-3.95{\times}10^{-3}$, respectively. The sinterability and the properties of $Y_2O_3$-doped AlN ceramics are not much altered by the addition of $WO_3$ or $Ga_2O_3$.

Scintillation Characteristics of CsI(Li) Single Crystals (CsI(Li) 단결정의 섬광특성)

  • Lee, W.G.;Doh, S.H.;Ro, T.I.;Kim, W.;Kang, H.D.;Moon, B.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.359-367
    • /
    • 1999
  • CsI(Li) single crystals doped with 0.02, 0.1, 0.2 and 0.3 mole% lithium as an activator were grown by Czochralski method. The lattice structure of grown CsI(Li) single crystal was bcc, its lattice constant was $4.568\;{\AA}$. The absorption edge of CsI(Li) single crystal was 245 nm, and the spectral range of luminescence was $300{\sim}600\;nm$, its maximum luminescence intensity appeared at 425 nm. The energy resolutions of CsI(Li) single crystal doped with 0.2 mole% lithium were 14.5% for $^{137}Cs$(662 keV), 11.4% for $^{54}Mn$(835 keV) and 17.7% and 7.9% for $^{22}Na$(511 keV and 1275 keV), respectively. The relation formula of $\gamma$-ray energy versus energy resolution was ln (FWHM%) = -0.893lnE + 8.456 and energy calibration formula was ${\log}E_r=1.455\;{\log}(ch.)-1.277$. The phosphorescence decay time of CsI(Li) crystal doped with 0.2 mole% lithium was 0.51 s at room temperature, and its time resolution measured by CFT(constant-fraction timing method) was 9.0 ns.

  • PDF

Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries (리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성)

  • Kwon, Ik-Hyun;Song, Myoung-Youp;Bang, Eui-Yong;Han, Young-Soo;Kim, Ki-Tae;Lee, Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • Disordered carbon and boron-substituted disordered carbons $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ were synthesized by Pyrolysis of LPG(liquid Propane gas)and $BCl_3$. Their electrochemical properties as anode materials for Li-ion secondary batteries were then investigated. When PVDF is added to the sample in a weight ratio 5 : 95, the disordered carbon with x=0.00 had the first discharge capacity 374 mAh/g. Its cycling performance was relatively good from the second cycle and it had the discharge capacity 258 mAh/g at the 10th cycle. When PVDF is added to the sample in a weight ratio 5 : 95, the sample with x=0.05 among the samples $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ exhibited the largest first discharge capacity 860 mAh/g and discharge capacity 181 mAh/g at the 10th cycle. All the samples had similar cycling performances from the second cycle. The sample $C_{0.90}B_{0.10}$ showed the best electrochemical properties as a anode materials fur Li-ion secondary battery from the view points of the first discharge capacity(853 mAh/g when $10w1.\%$ PVDF is used), cycling performance, discharge capacity(400mAh/g at the 10th cycle when $10wt.\%$ PVDF is used). All the samples showed generally larger charge and discharge capacities when $10wt.\%$ PVDF ratter than $5wt.\%$ PVDF is used. The plateau region in the range of voltage lower than 1.25V becomes larger probably since the structure becomes less disordered by the addition of boron. When boron is added, the charge and discharge capacities decreased suddenly at the second cycle. This may be become only a part of Li are reversibly deintercalated and intercalated and a part of Li which are strongly combined with B are not deintercalated. The increases in charge and discharge capacities are considered to be resulted from the increase in the potential of Li in the boron-added carbons, caused by the strengthening of the chemical bond between the intercalated Li and the boron-carbon host since the boron acts as electron acceptor.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Crystallographic and Magnetic Properties of Co-Ti Dopped Ba-Ferrite, $BaFe_{12-2x}Co_xTi_xO_{19}$ (Co-Ti으로 치환한 Ba-페라이트 $(BaFe_{12-2x}Co_xTi_xO_{19})$ 의 결정학적 및 자기적 특성 연구)

  • 채광표;이우천;이재광;이성호;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.154-158
    • /
    • 2000
  • Crystallographic and magnetic properties of the Co and Ti-doped BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$(0.0$\leq$x$\leq$1.0) system have been investigated by means of x-ray diffractometry, Mossbauer spectroscopy, and vibrating sample magnetometer. The structure of the system was found to be the magnetoplumbite structure, and the lattice parameter a is nearly constant and c increase as the doped Co-Ti contents increasing. We found that the saturation magnetization nearly unchanged but the coercivity rapidly decreased between x = 0.0 and x = 0.2 with increasing x in BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$. From the Mossbauer spectra analysis Co-Ti ions prefer 12k, 4 $f_{vi}$ and 2b sites.tes.

  • PDF

Effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulks (Nd-Ba-Cu-O 벌크 초전도체의 초전도 특성에 미치는 Ca첨가제의 영향)

  • 이훈배;위성훈;유상임
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.346-350
    • /
    • 2002
  • The effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulk superconductors, fabricated by the oxygen-controlled melt growth process, has been systematically investigated. Various c-axis textured bulk samples were grown using precursors with the nominal compositions of N $d_{1.8-x}$C $a_{x}$B $a_{2.4}$C $u_{3.4}$ $O_{y}$ (x = 0.00, 0.02, 0.05, 0.10, 0.15) in a reduced oxygen atmosphere of 1% $O_2$ in Ar. Magnetization measurements revealed that the critical temperatures( $T_{c}$) were almost linearly depressed from 95K to 86K with increasing the Ca dopant from x = 0.0 to 0.15, respectively, and thus critical current densities( $J_{c}$) at 77K and for H//c-axis of specimens were gradually degraded with increasing x. Compositional analyses revealed that although the amounts of the Ca dopant both in NdB $a_2$C $u_3$ $O_{y}$(Nd123) and N $d_4$B $a_2$C $u_2$ $O_{10}$(Nd422) were increased with increasing x, only less than half of the initial Ca compositions were detected in melt-grown Ca-doped Nd-Ba-Cu-O bulk crystals. The supression of $T_{c}$ is attributed to an increased Nd substitution for the Ba site in the Nd123 superconducting matrix with increasing the amount of the Ca dopant.t.opant.t.t.t.t.t.

  • PDF