• Title/Summary/Keyword: B-SiC

Search Result 1,320, Processing Time 0.044 seconds

Magnetic Properties of Nanocrystalline $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) Alloys ($Fe_{76-x} Cu_1Mo_xSi_14B_9(x=2, 3)$ 초미세 결정합금의 자기적 특성)

  • Pi, W.K.;Noh, T.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 1991
  • The effect of annealing on the magnetic properties and the microstructures of the amorphous $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) alloys were investigated. When annealed at 500${^{\circ}C}$ for 1hr, $8{\sim}9{\times}10^3$ of the effective permeability and 3~4 A/m of the coercive force were achieved upon crystallization to $\alpha$-Fe phase. And the average diameter of the $\alpha$-Fe grains was about 20nm. For the nanovrystalline ferromagnets. the fine grain size is the important requirement to obtain a good soft magnetic property. In this work, in order to get the finer grain size of $\alpha$-Fe phase, two-step annealing treatment was given. That is, following the low-temperature at $400{^{\circ}C}$ for 1~3hr, the high-temperature annealing at $500{^{\circ}C}$ for 1hr was carried out. As the low-temperature annealing time increased, the effective permeability increased to $1.2{\sim}1.7{\times}10^4$ and the coercive force decreased to about 2 A/m. And the grain size was observed to be smaller than 10nm. The increased permeability and the decreased coercive force were attributed to the reduced average crystalline anisotropy by the refinement of $\alpha$-Fe(Si) grains.

  • PDF

A Study on the Microstructure Analysis and Dielectric Properties of Porcelain Suspension Insulators (자기제 현수애자의 미세구조분석과 유전특성에 관한 연구)

  • Kim, Chan-Yeong;Kim, Ju-Yong;Song, Il-Geun;Lee, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.641-647
    • /
    • 1999
  • The paper provides the results of microstructure analysis and dielectricproperties of porcelain suspension insulators. The evaluation of characteristics was also made as a function of the manufacturers and fabricated years for the experimental specimens which had been used in real distribution lines. Even though the series A contained higher alumina contents than the series B, the densification of series A was lower than that of series B, resulting from much porosity. The microstructure investigation confirmed that series A had much porosity than series B. The series A contained quartz $(SiO_2),\; mullite\; (Al_6Si_2O_{13}),\; corundum(Al_2O_3),\; and cristobalite\; (SiO_2)$ phases. However, the series B had no cristobalite phase which had very high thermal expansion coefficient. Also, the tan$\delta$of series A was more abruptly increased than that of series B as increasing temperature. The elevated temperature may make much expansion of cristobalite crystal than other crystals, resulting in crack and puncture inside cap during the summer days.

  • PDF

Effect of Boron Carbide on Nonuniform Shrinkage during Pressureless Sintering of $\alpha$-SiC ($\alpha$-SiC의 상압소결에서 $B_4C$가 불균일수축에 미치는 영향)

  • 최병철;이문호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.553-559
    • /
    • 1990
  • The nonuniform shrinkage has been investigaed in pressureless sintering of $\alpha$-SiC, where born carbide and phenolic resin as a carbon source are used as densification aids. Compacted specimens, prepared from the granulated powder, were sintered at 215$0^{\circ}C$ for 30min in Ar atmosphere. Using the fresh and unseasoned graphite crucible, the upwarped specimens were obtained, while specimens were uniformly shrunk in the seasoned crucible. This effect is mainly due to the nonuniform distributjion of boron carbide during heatig, which originates in the reaction of boron carbide with CO gas, providing from the result of SiO2 reduction with carbon during heating.

  • PDF

A Study on High Voltage SiC-IGBT Device Miniaturization (고내압 SiC-IGBT 소자 소형화에 관한 연구)

  • Kim, Sung-Su;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.785-789
    • /
    • 2013
  • Silicon Carbide (SiC) is the material with the wide band-gap (3.26 eV), high critical electric field (~2.3 MV/cm), and high bulk electron mobility (~900 $cm^2/Vs$). These electronic properties allow attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. In general, device design has a significant effect on the switching and electrical characteristics. It is known that in this paper, we demonstrated that the switching performance and breakdown voltage of IGBT is dependent with doping concentration of p-base region and drift layer by using 2-D simulations. As a result, electrical characteristics of SiC-IGBT deivce is higher breakdown voltage ($V_B$= 1,600 V), lower on-resistance ($R_{on}$= 0.43 $m{\Omega}{\cdot}cm^2$) than Si-IGBT. Also, we determined that processing time and cost is reduced by the depth of n-drift region of IGBT was reduced.

Fabrication of Bi based solder glass (Bi계 저융점 유리의 제조)

  • 이창식;정경원;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.55-59
    • /
    • 1999
  • One of lead free glass, Bi based solder glass is investigated for electronic packaging application. The melting temperature of glass about $550^{\circ}C$ at Bi based glass (70wt% $B_2O_3$ + l5wt%$B_2O_3$ + 8wt% $SiO_2$ + 2wt% $P_2O_5$ + 4wt% $A1_2O_3$ +lwt% ZnO) and varied with $P_2O_5$ content in this system. Crystallized glasses were obtainded after 1hr heat teratment at $450^{\circ}C$ with 10wt% of $P_2O_5$ addition. Much higher melting temperature was observed at $B_2O_3$ rich composition area.

  • PDF

High Frequency Magnetic Properties of Tensioned Amorphous Fe-B-Si Ribbon (장력 변화에 따른 Fe-B-Si 비정질 리본의 고주파 자기특성 변화)

  • Kim, K.U.;Min, B.K.;Song, J.S.;Kim, B.K.;Hwang, S.D.;Choi, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1345-1347
    • /
    • 1994
  • High frequency Magnetic Properties of amorphous $Fe_{78}B_{13}Si_9$ ribbon were studied. Squareness ( Br/Bs ) and coercive force ( Hc ) of the specimen field annealed at $380^{\circ}C$ for 2 hrs are changed with the tension and the measuring frequency. So, we could optimise the tension having good magnetic properties at a certain frequency.

  • PDF

The Fabrication of Low Temperature Firing Substrate of $Li_2O-MgO-MgF_2-SiO_2-B_2O_3$ system

  • Park, Jung-Houn;Park, Dae-Hyun;Kang, Won-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.35-39
    • /
    • 1999
  • The $Li_2O-MgO-MgF_2-SiO_2$glasses with addition of $B_2O_3$ were investigated in order to make glass-ceramics for low temperature firing substrate. Glasses were made by melting at $1450^{\circ}C$ in the electronic furnace and crystallized at $750^{\circ}C$. The crystal phases were polycrystalline of lithium boron fluorphlogopite and lithium fluorhectorite. The crystal shape was chanced to granule type from needle type with increasing $B_2O_3$ content. Average particle size of the glass-ceramics after water swelling was 3.77$\mu\textrm{m}$. The optimum sintering temperature and sintering shrinkage of the substrate were $900^{\circ}C$ and 13.4%, respectively.

  • PDF

High -Rate Laser Ablation For Through-Wafer Via Holes in SiC Substrates and GaN/AlN/SiC Templates

  • Kim, S.;Bang, B.S.;Ren, F.;d'Entremont, J.;Blumenfeld, W.;Cordock, T.;Pearton, S.J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.217-221
    • /
    • 2004
  • [ $CO_2$ ]laser ablation rates for bulk 4H-SiC substrates and GaN/AIN/SiC templates in the range 229-870 ${\mu}m.min^{-1}$ were obtained for pulse energies of 7.5-30 mJ over diameters of 50·500 ${\mu}m$ with a Q-switched pulse width of ${\sim}30$ nsec and a pulse frequency of 8 Hz. The laser drilling produces much higher etch rates than conventional dry plasma etching (0.2 - 1.3 ${\mu}m/min$) making this an attractive maskless option for creating through-wafer via holes in SiC or GaN/AlN/SiC templates for power metal-semiconductor field effect transistor applications. The via entry can be tapered to facilitate subsequent metallization by control of the laser power and the total residual surface contamination can be minimized in a similar fashion and with a high gas throughput to avoid redeposition. The sidewall roughness is also comparable or better than conventional via holes created by plasma etching.

The Effect of Neutron Radiation on the Electrical Characteristics of SiC Schottky Diodes (중성자 조사에 따른 SiC Schottky Diode의 전기적 특성 변화)

  • Kim, Sung-Su;Kang, Min-Seok;Cho, Man-Soon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.199-202
    • /
    • 2014
  • The effect of neutron irradiation on the properties of SiC Schottky Diode has been investigated. SiC Schottky diodes were irradiated under neutron fluences and compared to the reference samples to study the radiation-induced changes in device properties. The condition of neutron irradiation was $3.1{\times}10^{10}$ $n/cm^2$. The current density after irradiation decreased from 12.7 to 0.75 $A/cm^2$. Also, a slight positive shift (${\Delta}V_{th}$= 0.15 V) in threshold voltage from 0.53 to 0.68 V and a positive change (${\Delta}{\Phi}_B$= 0.16 eV) of barrier height from 0.89 to 1.05 eV have been observed by the neutron irradiation, which is attributed to charge damage in the interface between the metal and the SiC layer.