Browse > Article

High -Rate Laser Ablation For Through-Wafer Via Holes in SiC Substrates and GaN/AlN/SiC Templates  

Kim, S. (Department of Chemical Engineering, University of Florida)
Bang, B.S. (Department of Chemical Engineering, University of Florida)
Ren, F. (Department of Chemical Engineering, University of Florida)
d'Entremont, J. (Lenox Laser Inc.)
Blumenfeld, W. (Lenox Laser Inc.)
Cordock, T. (Lenox Laser Inc.)
Pearton, S.J. (Department of Material Science and Engineering University of Florida)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.4, no.3, 2004 , pp. 217-221 More about this Journal
Abstract
[ $CO_2$ ]laser ablation rates for bulk 4H-SiC substrates and GaN/AIN/SiC templates in the range 229-870 ${\mu}m.min^{-1}$ were obtained for pulse energies of 7.5-30 mJ over diameters of 50·500 ${\mu}m$ with a Q-switched pulse width of ${\sim}30$ nsec and a pulse frequency of 8 Hz. The laser drilling produces much higher etch rates than conventional dry plasma etching (0.2 - 1.3 ${\mu}m/min$) making this an attractive maskless option for creating through-wafer via holes in SiC or GaN/AlN/SiC templates for power metal-semiconductor field effect transistor applications. The via entry can be tapered to facilitate subsequent metallization by control of the laser power and the total residual surface contamination can be minimized in a similar fashion and with a high gas throughput to avoid redeposition. The sidewall roughness is also comparable or better than conventional via holes created by plasma etching.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 I P Leerungnawarat, K P Lee, S J Pearton, F Ren, S N G Chu, J Electron Mater 30 202 (2001)   DOI
2 see for example, R J Shul (ed) Handbook of Advanced Plasma Processing Techniques (Springer, Berlin, 2000)
3 G F McLane and J R Flemish, Appl Phys Lett 68 3755 (1996)   DOI   ScienceOn
4 F A Khan, L Zhou, V Kumar, J Electrochem Soc 149 G420 (2002)   DOI   ScienceOn
5 J J Wang, E S Lambers, S J Pearton, M Ostling, C -M Zetterling, J M Grow, F Ren, and R J Shul, J Vac Sci Technol A 16 2204 (1998)   DOI   ScienceOn
6 H Cho, P Leerungnawarat, D C Hays, and S J Pearton, S N G Chu, R M Strong, C-M Zetterling and M Ostling and F Ren, Appl Phys Lett 76 739 (2000)   DOI   ScienceOn
7 P Chabert, N Proust, J Perrin and R W Boswell, Appl Phys Lett 76 2310 (2000)   DOI   ScienceOn
8 J R Flemish, K Xie and J H Zhao, Appl Phys Lett 64 2315 (1994)   DOI   ScienceOn
9 F A Khan and I Adesida, Appl Phys Lett 75 2268 (1999)   DOI
10 S Tanaka, K Rajanna, T Abe, and M Esashi, J Vae Sci Technol B 19 2173 (2001)   DOI   ScienceOn
11 B Li, L Cao and J H Zhao, Appl Phys Lett 73 653 (1998)   DOI   ScienceOn
12 P Leerungnawarat, D C Hays, H Cho, S J Pearton, R M Strong, C M Zetterling, and M Ostling, J Vac Sci Technol B 17 2050 (1999)   DOI
13 S Thomas III and J J Brown, in Handbook of Advanced Plasma Processing Techniques, ed R J Shul and S J Pearton (Springer, Berlin 2000)
14 R Singh, J A Cooper, M R Melloch, J W Palmour, T P Chow, IEEE Trans on Electron Dev 49 665 (2002)   DOI   ScienceOn
15 P H Yih, A J Steckl, J Electrochem Soc 142 2853 (1995)   DOI
16 A P Zhang, L B Rowland, E B Kaminsky, J W Kretchmer. R A Beaupre, J L Garrett, J B Tucker, B J Edward, J Foppes, A F Allen, Solid-State Electron 47 821 (2003)   DOI   ScienceOn
17 J B Casady, A K Agarwal, S Seshadri, R R Siergiej, L B Rowland, M F MacMillan, D C Sheridan, P A Sanger, C D Brandt. Solid-State Electronics 42 2165 (1998)   DOI   ScienceOn
18 J B Casady, E D Luckowski, M Bozack, D Sheridan, R W Johnson, J R Williams, J Electrochem Soc, 143 1750 (1996)   DOI
19 J C J Verhoeven, J K M Jansen, R M M Mattheij and W R Smith, Mathematical and Computer Modelling 37 419(2003)   DOI   ScienceOn