DOI QR코드

DOI QR Code

The Effect of Neutron Radiation on the Electrical Characteristics of SiC Schottky Diodes

중성자 조사에 따른 SiC Schottky Diode의 전기적 특성 변화

  • Kim, Sung-Su (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kang, Min-Seok (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Man-Soon (Korea Atomic Energy Research Institute) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 김성수 (광운대학교 전자재료공학과) ;
  • 강민석 (광운대학교 전자재료공학과) ;
  • 조만순 (한국원자력연구원) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2014.02.04
  • Accepted : 2014.03.14
  • Published : 2014.04.01

Abstract

The effect of neutron irradiation on the properties of SiC Schottky Diode has been investigated. SiC Schottky diodes were irradiated under neutron fluences and compared to the reference samples to study the radiation-induced changes in device properties. The condition of neutron irradiation was $3.1{\times}10^{10}$ $n/cm^2$. The current density after irradiation decreased from 12.7 to 0.75 $A/cm^2$. Also, a slight positive shift (${\Delta}V_{th}$= 0.15 V) in threshold voltage from 0.53 to 0.68 V and a positive change (${\Delta}{\Phi}_B$= 0.16 eV) of barrier height from 0.89 to 1.05 eV have been observed by the neutron irradiation, which is attributed to charge damage in the interface between the metal and the SiC layer.

Keywords

References

  1. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., 76, 1363 (1994). https://doi.org/10.1063/1.358463
  2. A. Larry, Nucl. Inst Meth. A, 428, 95 (1999). https://doi.org/10.1016/S0168-9002(98)01585-X
  3. P. Masri, Surf. Sci. Rep., 48, 1 (2002). https://doi.org/10.1016/S0167-5729(02)00099-7
  4. W. Cunningham, A. Gouldwell, G. Lambm J. Scott, K. Mathieson, P. Roya, R. Bates, P. Thornton, K.M. Smith, R. Cusco, M. Glaser, and M. Rahman, Nucl. Instr. and Meth. A, 487, 33 (2002). https://doi.org/10.1016/S0168-9002(02)00941-5
  5. J. Kim, Appl. Lett., 84, 371 (2004). https://doi.org/10.1063/1.1642271
  6. F. Nava, P. Vanni, M. Bruzzi, S. Lagomarsino, S. Sciortino, G. Wagner, and C. Lanzieri, IEEE Trans. Nucl. Sci., NS-36, 238 (2004).
  7. F. H. Ruddy, A. R. Dulloo, J. G. Seidel, M. K. Das, S. H. Ryu, and A. K. Agarwal, Nuclear Science Symposium, Medical Imaging Conference, Symposium on Nuclear Power Systems and the 14th International Workshop on Room Temperature Semiconductor X- and Gamma-Ray Detectors (Rome, Italy, 2004)
  8. M. Bruzzi, M. Bucciolini, F. Nava, S. Pini, and S. Russo, Nucl. Instr. and Meth. A, 485, 172 (2002). https://doi.org/10.1016/S0168-9002(02)00550-8
  9. A. R. Dullo, F. H. Ruddy, J. G. Seidel, J. M. Adams, J. S. Nico, and D. M. Filliam, Nucl. Instr. and Meth. A, 498, 415 (2003). https://doi.org/10.1016/S0168-9002(02)01987-3
  10. J. H. Kim, S. Nigam, F. Ren, D. Schoenfeld, G. Y. Chung, and S. J. Pearton, Electrochem. Solid State Lett., 6, G105 (2003). https://doi.org/10.1149/1.1584211
  11. K. Cinar, C. Coskun, E. Gur, and S. Aydogan, Nuclear Instruments and Methods in Physics Research B, 267, 87 (2009). https://doi.org/10.1016/j.nimb.2008.10.087