• Title/Summary/Keyword: B-SiC

Search Result 1,320, Processing Time 0.041 seconds

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Sintering Characterization of Hot-Pressed SiC Prepared by SHS Microwave Method (SHS Microwave 법으로 합성한 SiC 분말의 고온가압 소결특성)

  • 김도경;안주삼;김익진;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.865-872
    • /
    • 1995
  • Ultra-fine $\beta$-SiC powders were fabricated by self-propagating high temperature synthesis process (SHS) using microwave oven. The flexural strength, fracture toughness, and hardness of hot pressed sample at 200$0^{\circ}C$ for 60 min using synthesized SiC powders, which had 2 wt% of Al2O3 and 2.5 wt% of B4C content, showed 438 MPa, 4.15MPa.m1/2 and 28 GPa, respectively. The highest strength, fracture toughness, and hardness of composites containing 4wt% of Al2O3, which had highest relative density of 99.9%, showed 458 MPa, 4.6MPa.m1/2 and 36.2 GPa, respectively.

  • PDF

Properties of ${\beta}$-SiC-$TiB_2$ Electrocondutive Ceramic Composites by Spray Dry (Spray Dry한 ${\beta}$-SiC-$TiB_2$ 도전성(導電性) 세라믹 복합체(複合體)의 특성(特性))

  • Shin, Yong-Deok;Ju, Jing-Young;Choi, Kwang-Soo;Oh, Sang-Soo;Lee, Dong-Yoon;Yim, Seung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1538-1540
    • /
    • 2003
  • The composites were fabricated respectively 61vol.% ${\beta}$-SiC and 39vol.% $TiB_2$ spray-dried powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at $1700^{\circ}C,\;1750^{\circ}C\;1800^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density, the Young's modulus and fracture toughness showed respectively the highest value of 92.97%, 92.88Gpa and $4.4Mpa{\cdot}m^{1/2}$ for composites by pressureless annealing temperature $1700^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of $8.09{\times}10^{-3}{\Omega}{\cdot}cm$ for composite by pressureless annealing tempe rature $1700^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the SiC-$TiB_2$ composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Effects of Mold on Properties of SiC-$ZrB_2$ Composites through SPS (SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 몰드의 영향)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Park, Jin-Hyoung;Ju, Jin-Young;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1515-1516
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjection a 40:60(vol%) mixture of zirconium diborided ($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS) under argon atmosphere. Inner diameters of graphite mold were $15mm{\varphi}$ and $20mm{\varphi}$, respectively. The relative densities of $15mm{\varphi}$ and $20mm{\varphi}$ sample were 99.4% and 97.88%, respectively. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The result of FE-SEM of fracture face of $15mm{\varphi}$ sample was intergranular fracture and that of $20mm{\varphi}$ sample was transgranular fracture. Because the fracture strength of $15mm{\varphi}$ sample was much higher than that of $20mm{\varphi}$ sample. The electrical resistivity, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$ of $15mm{\varphi}$ sample was higher than that, $6.17{\times}10^{-4}{\Omega}{\cdot}cm$ of $20mm{\varphi}$ sample because of densification. Although sintering condition of SPS is same. the properties of sintered SiC-$ZrB_2$ compacts were changed according to inner diameter of graphite mold.

  • PDF

A Study on Sintering Properties of a SiC-ZrB2 Composite According to Mold Size of SPS Through Computer Simulation (컴퓨터 시뮬레이션에 의한 SPS의 몰드크기에 따른 SiC-ZrB2 복합체의 소결특성 연구)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Jin, Beom-Soo;Kang, Myeong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.988-991
    • /
    • 2012
  • The computer simulation was performed to confirm distribution of current and power density according to inner diameter of graphite mold of SPS(Spark Plasma Sintering). When the inner diameters of a graphite mold are varied $10mm{\Phi}$, $20mm{\Phi}$, $30mm{\Phi}$ and $40mm{\Phi}$, the more the inner diameter of graphite mold is decreased, the more the current density of punch section is increased. Because the electrical resistivity of the SiC-$ZrB_2$ specimen section($7.77{\times}10^{-4}{\Omega}{\cdot}cm$) was lower than the electrical resistivity($6.00{\times}10^{-3}{\Omega}{\cdot}cm$) of graphite section, the current density and power density of specimen section was higher than those of graphite section. It is considered that a SiC-$ZrB_2$ composite is sintered by more Joule heat of specimen section than that of mold and punch section. The current and power density distribution of a SiC-$ZrB_2$ composite can be predicted through computer simulation when SPS is conducted, and an electrical resistivity of the SiC-$ZrB_2$ composite is main element of SPS.

Combined Foliar Spray of Boron, Calcium, and Silicon can Influence Quality and Shelf Life of Cherry Tomato in Modified Atmosphere Packaging (붕소, 칼슘, 규소의 복합 엽면시비가 방울토마토의 품질과 MAP 조건에서 저장성에 미치는 영향)

  • Islam, Mohammad Zahirul;Mele, Mahmuda Akter;Han, Su Jeong;Kim, Ju Young;Choi, In-Lee;Yoon, Jae Su;Yoon, Hyuk Sung;Park, Jong-Man;Kim, Il-Seop;Choi, Ki-Young;Kang, Ho- Min
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.310-316
    • /
    • 2017
  • This study was analyzed the effects of boron (B), calcium (Ca), silicon (Si) on quality and shelf life of 'Unicorn' cherry tomato at the light red maturity-stage. The storage conditions were modified atmosphere packaging (MAP) by oxygen transmission rate (OTR) packaging film at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$. Respiration and ethylene production were the lowest in B + Ca + Si -treated tomato fruits. The lowest fresh weight loss and the longest shelf life resulted from the B + Ca + Si treatment. And the firmness was enhanced by B + Ca + Si treatment at harvest time, and it was retained after storage at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$. Significantly lower soluble solids, lycopene, and color development were found at B + Ca + Si-treated tomato fruits compared with control after storage. Moreover, the highest titratable acidity and vitamin C content were observed in B + Ca + Si-treated tomato fruits after storage. From the above results, it was concluded that B + Ca + Si combined treatment can delay the maturity of cherry tomato after harvesting, and retained the firmness and prolong the shelf life.

A Study of B-implanted n Type Si Epi Resistor for the Fabrication of Thermal Stable Pressure Sensor (열적 안정한 압력센서 제작을 위한 보론(B) 이온 주입 n형 Si 에피 전극 연구)

  • Choi, Kyeong-Keun;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this paper, we focus on optimization of a boron ($^{11}B$)-implanted n type Si epi substrate for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $125^{\circ}C$. The $^{11}B$-implantation on the N type-Si epi substrate formed isolation from the rest of the N-type Si by the depletion region of a PN junction. The TCR increased as the temperature of rapid thermal anneal (RTA) was increased at the temperature range from $900^{\circ}C$ to $1000^{\circ}C$ for the $p^+$ contact with implantation at dose of $1E16/cm^2$, but sheet resistance of this film was decreased. After the optimization of anneal process condition, the TCR of $1126.7{\pm}30.3$ (ppm/K) was obtained for the $p^-$ resistor-COB package chips contained $p^+$ contact with the implantation of $5E14/cm^2$. This shows the potential of the $^{11}B$-implanted n type Si epi substrate as a resistor for pressure sensor in thermal stable environment applications..