• 제목/요약/키워드: B-Raf inhibitor

검색결과 5건 처리시간 0.017초

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf

  • Ahn, Jun-Ho;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.114-120
    • /
    • 2013
  • Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 ($IC_{50}$ < $0.5{\mu}M$), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 ($IC_{50}$ < $20{\mu}M$). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at $G_0/G_1$ with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Anti-septic effects of dabrafenib on HMGB1-mediated inflammatory responses

  • Jung, Byeongjin;Kang, Hyejin;Lee, Wonhwa;Noh, Hyun Jin;Kim, You-Sun;Han, Min-Su;Baek, Moon-Chang;Kim, Jaehong;Bae, Jong-Sup
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.214-219
    • /
    • 2016
  • A nucleosomal protein, high mobility group box 1 (HMGB1) is known to be a late mediator of sepsis. Dabrafenib is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Inhibition of HMGB1 and renewal of vascular integrity is appearing as an engaging therapeutic strategy in the administration of severe sepsis or septic shock. Here, we examined the effects of dabrafenib (DAB) on the modulation of HMGB1-mediated septic responses. DAB inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses by enhancing the expressions of cell adhesion molecules (CAMs) in human endothelial cells. In addition, treatment with DAB inhibited the HMGB1 secretion by CLP and sepsis-related mortality and pulmonary injury. This study demonstrated that DAB could be alternative therapeutic options for sepsis or septic shock via the inhibition of the HMGB1 signaling pathway.

Efficiency and Side Effects of Sorafenib Therapy for Advanced Hepatocellular Carcinoma: A Retrospective Study by the Anatolian Society of Medical Oncology

  • Berk, Veli;Kaplan, Mehmet Ali;Tonyali, Onder;Buyukberber, Suleyman;Balakan, Ozan;Ozkan, Metin;Demirci, Umut;Ozturk, Turkan;Bilici, Ahmet;Tastekin, Didem;Ozdemir, Nuriye;Unal, Olcun Umit;Oflazoglu, Utku;Turkmen, Esma;Erdogan, Bulent;Uyeturk, Ummugul;Oksuzoglu, Berna;Cinkir, Havva Yesil;Yasar, Nurgul;Gumus, Mahmut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7367-7369
    • /
    • 2013
  • Background: Inoperable and metastatic hepatocellular carcinoma (HCC) is associated with a poor prognosis and low chemotherapeutic efficiency. Sorafenib is an oral multi-kinase inhibitor exerting its effects via the RAF/MEK/ERK pathway, vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor beta (PDGFR-${\beta}$) tyrosine kinases. Randomized studies have shown a significant contribution of sorafenib to life expectancy and quality of life of cancer patients. The aim of the present study is to evaluate the efficacy and side effects of sorafenib therapy in Turkey. Materials and Methods: Data for 103 patients (82 males, 21 females) receiving sorafenib therapy in 13 centers from February 2008 to December 2012 were evaluated. Median age was 61 years and median ECOG performance status was 1 (range: 0-2). 60 patients (58%) had hepatitis B, 15 patients (15%) had hepatitis C infection and 12 patients (12%) had a history of alcohol consumption. All of the patients had Child scores meeting the utilization permit of the drug in our country (Child A). Results: A total of 571 cycles of sorafenib therapy were administered with a median of four per patient. Among the evaluable cases, there was partial response in 15 (15%), stable disease in 52 (50%), and progressive disease in 36 (35%). Median progression-free survival was 18 weeks and median overall survival was 48 weeks. The dose was reduced only in 6 patients and discontinued in 2 patients due to grade 3-4 toxicity, 18 patients (17%) suffering hand-foot syndrome, 7 (7%) diarrhea, and 2 (2%) vomiting. Conclusions: This retrospective study demonstrated better efficacy of sorafenib therapy in patients with advanced HCC compared to the literature while progression-free survival and overall survival findings were comparable. The side effect rates indicate that the drug was tolerated well. In conclusion, among the available treatment options, sorafenib is an efficient and tolerable agent in patients with inoperable or metastatic HCC.