• 제목/요약/키워드: B cell epitope

Search Result 42, Processing Time 0.027 seconds

T-and cross-reactive B-cell epitopes of Porphyromonas gingivalis and human heat shock protein 60 in atherosclerosis (동맥경화증에 있어서 Porphyromonas gingivalis와 인체 열충격단백의 T-세포 및 교차성 B-세포 epitope)

  • Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.331-340
    • /
    • 2003
  • 본 연구의 목적은 인간의 동맥경화증에서 Porphyromonas gingivalis (P. gingivalis)와 인체 열충격단백 60의 T-세포 및 교차성 B-세포 epitope를 규명하고 수립된 T-세포주의 T-세포 주요조직적합체 양상을 파악하려는 데 있다. P. gingivalis 열충격단백-반응성 T 세포주와 환자의 혈청을 이용하여 P. gingivalis 열충격단백60 분자를 구성하는 104개의 중복성 합성 펩타이드의 T-세포 epitope과 B-세포 epitope을 규명하였다. 인체 열충격단백60에 대한 B-세포 epitope도 같은 방법으로 파악하였다. P. gingivalis, P. gingivalis 열충격단백60 또는 인체 열충격단백60에 대한 IgG 항체는 모든 동맥경화증 환자에서 상승하였다. P. gingivalis 열충격단백60의 3, 15, 24, 33, 45, 53, 64, 84, 88, 99번 펩타이드가 주요한 T-세포 epitope였고 이것들은 T-세포 및 B-세포 공동 epitope이기도 했다. 또한 인체 열충격단백60 교차반응 B-세포 epitope은 15, 29, 53, 56, 69, 74번 펩타이드로 판명되었다. 대부분 환자의 주요조직적합체는 $HLA-DRB1^{\ast}1504$$HLA-DZB1^{\ast}0603$으로 나타났다. 결론적으로 P. gingivalis 열충격단백60은 제 2급 주요조직적합제-제한적으로 분해되고 전달되었으며 이 단백질이 공통적인 T-세포 및 B-세포 epitope를 가지면서 동시에 인체 열충격단백60과 교차성 B-세포 epitope을 가지면서 동맥경화증의 면역조절기능에 관여한다고 볼 수 있다.

Epitope specificity of Porphyromonas gingivalis heat shock protein for T-cell and/or B-cell in human atherosclerosis (동맥경화증에서 T-세포 및 B-세포에 대한 Porphyromonas gingivalis 열충격 단백의 항원 결정 부위 특이성 연구)

  • Bak, Jung-Gyu;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.179-191
    • /
    • 2003
  • Since periodontal infections are suggested as risk factors for the development of cardiovascular diseases, the present study was performed to evaluate the T cell immune responses specific to Pophylomonas gingivalis(P. gingivalis) heat shock protein(hsp) 60 and T-cell and B-cell epitope specificities for P. gingivalis hsp60 in atherosclerosis. Anti-P, gingivalis IgG antibody titers were elevated in all patients. We could establish P. gingivalis hsp-specific T cell lines from the atheroma lesions, a mixture of $CD4^+$ and $CD8^+$ cells producing the cytokines characteristic of both Th1 and Th2 subsets. of 108 overlapping synthetic peptides spanning whole P. gingivalis hsp60 molecule, ten peptides with common epitopes specificities for both T-cell and B-cell were identified. it was concluded that P. gingivalis hsp60 might K involved in the immunoregulatory process of atherosclerotic diseases with epitope specificities.

Construction and Characterization of Recombinant Poliovirus that Delivers T-cell epitope (T-cell Epitope을 운반할 수 있는 재조합소아마비바이러스 벡터의 제조 및 특성연구)

  • Cho, Seong-Pil;Lee, Bum-Young;Chung, Soo-Il;Min, Mi-Kyung
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 1998
  • Recombinant polioviruses have been developed by many research groups for use as vaccine vector because poliovirus induces mucosal immunity as well as humoral immunity through oral uptake. We assessed the potential use of poliovirus as a T-cell epitope carrier. Recombinant poliovirus V129 5L was constructed to have a substituted T-helper epitope from the core protein of Hepatitis B virus at neutralization antigenic site 1 on its VP1 capsid protein. The recombinant virus replicated less efficiently than type 1 poliovirus Mahoney strain. The V129 5L formed a little smaller plaques than the Mahoney strain and showed some 1.25 log unit lower titer at the peak in the one-step growth kinetics though it had similar growth profile to that of the Mahoney strain. Since V129 5L recombinant virus was genetically stable even after 24 successive passages in HeLa cells, the antigenic site 1 on VP1 capsid protein was confirmed for its ability of carrying T cell epitope. The genetic stability of V129 5L also indicated that recombinant poliovirus can be successfully utilized for the development of the multivalent vaccines.

  • PDF

CD8+ T Cell-mediated Immunity Induced by Heterologous Prime-boost Vaccination Based on DNA Vaccine and Recombinant Vaccinia Virus Expressing Epitope (Epitope발현 DNA Vaccine과 Recombinant Vaccinia Virus를 이용한 Heterologous Prime-boost Vaccination에 의하여 유도되는 CD8+ T 세포 매개성 면역)

  • Park, Seong-Ok;Yoon, Hyun-A;Aleyas, Abi George;Lee, John-Hwa;Chae, Joon-Seok;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.89-98
    • /
    • 2005
  • Background: DNA vaccination represents an anticipated approach for the control of numerous infectious diseases. Used alone, however, DNA vaccine is weak immunogen inferior to viral vectors. In recent, heterologous prime-boost vaccination leads DNA vaccines to practical reality. Methods: We assessed prime-boost immunization strategies with a DNA vaccine (minigene, $gB_{498-505}$ DNA) and recombinant vaccinia virus $(vvgB_{498-505})$ expressing epitope $gB_{498-505}$ (SSIEF ARL) of CD8+ T cells specific for glycoprotein B (gB) of herpes simplex virus (HSV). Animals were immunized primarily with $gB_{498-505}$ epitope-expressing DNA vaccine/recombinant vaccinia virus and boosted with alternative vaccine type expressing entire Ag. Results: In prime-boost protocols using vvgBw (recombinant vaccinia virus expressing entire Ag) and $vvgB_{498-505}$, CD8+ T cell-mediated immunity was induced maximally at both acute and memory stages if primed with vvgBw and boosted with $vvgB_{498-505}$ as evaluated by CTL activity, intracellular IFN-staining, and MHC class I tetramer staining. Similarly $gB_{498-505}$ DNA prime-gBw DNA (DNA vaccine expressing entire Ag) boost immunization elicited the strongest CD8+ T cell responses in protocols based on DNA vaccine. However, the level of CD8+ T cell-mediated immunity induced with prime-boost vaccination using DNA vaccine expressing epitope or entire Ag was inferior to those based on vvgBw and $vvgB_{498-505}$. Of particular interest CD8+ T cell-mediated immunity was optimally induced when $vvgB_{498-505}$ was used to prime and gB DNA was used as alternative boost. Especially CD7+ T cell responses induced by such protocol was longer lasted than other protocols. Conclusion: These facts direct to search for the effective strategy to induce optimal CD8+ T cell-mediated immunity against cancer and viral infection.

Linear and Conformational B Cell Epitope Prediction of the HER 2 ECD-Subdomain III by in silico Methods

  • Mahdavi, Manijeh;Mohabatkar, Hassan;Keyhanfar, Mehrnaz;Dehkordi, Abbas Jafarian;Rabbani, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3053-3059
    • /
    • 2012
  • Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family of receptor tyrosine kinases that plays important roles in all processes of cell development. Their overexpression is related to many cancers, including examples in the breast, ovaries and stomach. Anticancer therapies targeting the HER2 receptor have shown promise, and monoclonal antibodies against subdomains II and IV of the HER2 extra-cellular domain (ECD), Pertuzumab and Herceptin, are currently used in treatments for some types of breast cancers. Since anti HER2 antibodies targeting distinct epitopes have different biological effects on cancer cells; in this research linear and conformational B cell epitopes of HER2 ECD, subdomain III, were identified by bioinformatics analyses using a combination of linear B cell epitope prediction web servers such as ABCpred, BCPREDs, Bepired, Bcepred and Elliprro. Then, Discotope, CBtope and SUPERFICIAL software tools were employed for conformational B cell epitope prediction. In contrast to previously reported epitopes of HER2 ECD we predicted conformational B cell epitopes $P1_C$: 378-393 (PESFDGDPASNTAPLQ) and $P2_C$: 500-510 (PEDECVGEGLA) by the integrated strategy and P4: PESFDGD-X-TAPLQ; P5: PESFDGDP X TAPLQ; P6: ESFDGDP X NTAPLQP; P7: PESFDGDP-X-NTAPLQ; P8: ESFDG-XX-TAPLQPEQL and P9: ESFDGDP-X-NTAPLQP by SUPERFICIAL software. These epitopes could be further used as peptide antigens to actively immune mice for development of new monoclonal antibodies and peptide cancer vaccines that target different epitopes or structural domains of HER2 ECD.

T-cell epitope specificity for Porphyromonas gingivalis heat shock protein in periodontitis (치주염환자의 Porphyromonas gingivalis 열충격단백에 대한 T-세포 항원 결정부위 특이성 연구)

  • Lee, Ji-Young;Lee, Ju-Yeon;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2003
  • Due to considerably high degree of sequence homology between bacterial and human heat shock proteins(hsp), it has been widely thought that this protein might be involved in autoimmune disease mechanisms in humans. To elucidate how stress proteins contribute in the immunopathogenesis of periodontitis, the present study was performed to evaluate the T cell immune responses specific to Porphyromonas gingivalis (P. gingivalis) heat shock protein (hsp)60 and T-cell epitope specificities for P. gingivalis hsp60 in periodontitis. Anti-P. gingivalis IgG antibody titers were elevated in all patients. We could establish P. gingivalis hsp-specific T cell ines from the peripheral blood of peridontitis, a mixture of $CD4^+$ and $CD8^+$ cells. Of 108 overlapping synthetic peptides spanning whole P. gingivalis hsp60 moleculc, ten peptides with cpitopes specifities for T-cell were showed. Interestingly, ten epitopes were also identified as T-cell epitopes in the present study as well as B-cell epitopes in peridontitis. Therefore, all the ten representative epitopes were designated as common T-and B-cell epitopes for peridontitis. It is critical in developing a peptide vaccine strategy for potential prevention of periodontitis. It was concluded that P. gingivalis hsp60 might be involved in the immunoregulatory process of periodontitis with heat shock protein specificities.

Characterization of KI-24, a Novel Murine Monoclonal Antibody with Specific Reactivity for the Human Immunodeficiency Virus-1 p24 Protein

  • Shin, Song-Yub;Park, Jung-Hyun;Lee, Myung-Kyu;Jang, So-Youn;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.92-95
    • /
    • 2000
  • The HIV-1 p24(202-221) sequence ETINNEEEWDRVHPV HAGP contains a B-cell epitope with the earliest immune response and the highest antibody titer against anti-mouse sera obtained by immunization with p24 antigens. A novel mouse monoclonal antibody (mAb) was generated against the immunodominant B-cell epitope of the HIV-1 p24 capsid protein, p24(202-221). BALB/c mice were immunized with the four branched multiple antigenic peptide (MAP) containing the HIV-1p24(202-221) sequence, and antibody-secreting hybridoma were produced by fusion of mouse splenocytes with P3X63Ag8.653, mouse myeloma cells. One clone which produced the antigen-specific mAb named KI-24 (Isotype IgG1, light chain: ${\kappa}$) was identified. mAb KI-24 was highly specific for both the p24(202-221) and p24 proteins when analyzed by ELISA and Western blotting. Since p24(202-221) also contains a cytotoxic T-lymphocyte epitope, this specfic peptide epitope and the monoclonal antibody with specific reactivity against the p24 protein and p24(202-221) can be used in peptide vaccine development and p24 antigen detection from HIV patients.

  • PDF

Characterization of α-Gal Epitope in Cells and Tissues from Homozygous α-1,3-Galactosyltransferase Knockout Pigs

  • Hwang, In-Sul;Kwon, Dae-Jin;Kwak, Tae-Uk;Oh, Keon Bong;Ock, Sun-A;Chung, Hak-Jae;Im, Gi-Sun;Hwang, Seongsoo
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.127-132
    • /
    • 2015
  • To overcome the hyperacute immune rejection during pig-to-non-human primates xenotranasplantation, we have produced and bred ${\alpha}$-1,3-galactosyltransferase knock-out ($GalT^{-/-}$) pigs. In this study, the somatic cells and tissues from the $GalT^{-/-}$ pigs were characterized by an analysis of the expression of Gal${\alpha}$-1,3-Gal (${\alpha}-Gal$) epitope. Briefly, ear fibroblast cell lines of 19 homozygous $GalT^{-/-}$ pigs were established and cryopreserved. The expression of ${\alpha}-Gal$ epitope in the cells was measured by fluorescence activated cell sorter (FACS) analysis using BS-I-B4 lectin. Also, the homozygous ($GalT^{-/-}$) cells and tissues samples were immunostained with BS-I-B4 lectin for analysis of ${\alpha}-Gal$ epitope expression. The results showed that the expression of ${\alpha}-Gal$ epitope in $GalT^{-/-}$ cells (0.2 %) were significantly (p<0.05) down-regulated to the range of cynomolgus monkey fibroblast (0.2 %) cells compared to heterozygous ($GalT^{-/+}$) (9.3 %) and wild type ($GalT^{+/+}$) (93.7 %) fibroblast cells. In the immunostaining results, while the expression of ${\alpha}-Gal$ epitope was detected a partly in $GalT^{-/+}$ cells and mostly in $GalT^{+/+}$ cells, it was almost not detected in the $GalT^{-/-}$ cells. Also, immunostaining results from various tissues of the $GalT^{-/-}$ pig showed that the expression of ${\alpha}-Gal$ epitope was not detectable, whereas various tissues from $GalT^{+/+}$ pig showed a strong expression of ${\alpha}-Gal$ epitope. Our results demonstrated that ${\alpha}-Gal$ epitope expressions from $GalT^{-/-}$ pigs were successfully knocked out to prevent hyperacute immune rejection for further study of xenotransplantation.

In silico Design of Discontinuous Peptides Representative of B and T-cell Epitopes from HER2-ECD as Potential Novel Cancer Peptide Vaccines

  • Manijeh, Mahdavi;Mehrnaz, Keyhanfar;Violaine, Moreau;Hassan, Mohabatkar;Abbas, Jafarian;Mohammad, Rabbani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5973-5981
    • /
    • 2013
  • At present, the most common cause of cancer-related death in women is breast cancer. In a large proportion of breast cancers, there is the overexpression of human epidermal growth factor receptor 2 (HER2). This receptor is a 185 KDa growth factor glycoprotein, also known as the first tumor-associated antigen for different types of breast cancers. Moreover, HER2 is an appropriate cell-surface specific antigen for passive immunotherapy, which relies on the repeated application of monoclonal antibodies that are transferred to the patient. However, vaccination is preferable because it would stimulate a patient's own immune system to actively respond to a disease. In the current study, several bioinformatics tools were used for designing synthetic peptide vaccines. PEPOP was used to predict peptides from HER2 ECD subdomain III in the form of discontinuous-continuous B-cell epitopes. Then, T-cell epitope prediction web servers MHCPred, SYFPEITHI, HLA peptide motif search, Propred, and SVMHC were used to identify class-I and II MHC peptides. In this way, PEPOP selected 12 discontinuous peptides from the 3D structure of the HER2 ECD subdomain III. Furthermore, T-cell epitope prediction analyses identified four peptides containing the segments 77 (384-391) and 99 (495-503) for both B and T-cell epitopes. This work is the only study to our knowledge focusing on design of in silico potential novel cancer peptide vaccines of the HER2 ECD subdomain III that contain epitopes for both B and T-cells. These findings based on bioinformatics analyses may be used in vaccine design and cancer therapy; saving time and minimizing the number of tests needed to select the best possible epitopes.

Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection

  • Kim, Min Ki;Lee, Ara;Hwang, Yu Kyeong;Kang, Chang-Yuil;Ha, Sang-Jun
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.207-218
    • /
    • 2014
  • Chronic virus infection leads to the functional impairment of dendritic cells (DCs) as well as T cells, limiting the clinical usefulness of DC-based therapeutic vaccine against chronic virus infection. Meanwhile, B cells have been known to maintain the ability to differentiate plasma cells producing antibodies even during chronic virus infection. Previously, ${\alpha}$-galactosylceramide (${\alpha}GC$) and cognate peptide-loaded B cells were comparable to DCs in priming peptide-specific $CD8^+$ T cells as antigen presenting cells (APCs). Here, we investigated whether B cells activated by ${\alpha}GC$ can improve virus-specific T cell immune responses instead of DCs during chronic virus infection. We found that comparable to B cells isolated from naïve mice, chronic B cells isolated from chronically infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) after ${\alpha}GC$-loading could activate CD1d-restricted invariant natural killer T (iNKT) cells to produce effector cytokines and upregulate co-stimulatory molecules in both naïve and chronically infected mice. Similar to naïve B cells, chronic B cells efficiently primed LCMV glycoprotein (GP) 33-41-specific P14 $CD8^+$ T cells in vivo, thereby allowing the proliferation of functional $CD8^+$ T cells. Importantly, when ${\alpha}GC$ and cognate epitope-loaded chronic B cells were transferred into chronically infected mice, the mice showed a significant increase in the population of epitope-specific $CD8^+$ T cells and the accelerated control of viremia. Therefore, our studies demonstrate that reciprocal activation between ${\alpha}GC$-loaded chronic B cells and iNKT cells can strengthen virus-specific T cell immune responses, providing an effective regimen of autologous B cell-based therapeutic vaccine to treat chronic virus infection.