• Title/Summary/Keyword: Azimuth information

Search Result 245, Processing Time 0.02 seconds

An Improved Tracking Parameter File Generation Method using Azimuth Fixing Method (방위각 고정 기법을 이용한 개선된 Tracking Parameter File 생성 방법)

  • Jeon, Moon-Jin;Kim, Eunghyun;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • A LEO satellite transmits recorded images to a ground station using an X-band antenna during contact. The X-band antenna points to the ground station according to a TPF (tracking parameter file) during communication time. A TPF generation software generates azimuth and elevation profile which make the antenna point to the ground station using satellite orbit and attitude information and mission information including recording and downlink operation. When the satellite passes above the ground station, azimuth velocity increases rapidly so that jitter may occur if the azimuth velocity is in specific range. In case of realtime mission in which the satellite perform recording and downlink simultaneously, azimuth velocity must be lower than specific value to prevent image blur due to jitter effect. The method to point one virtual ground station has limitation of azimuth velocity reduction. In this paper, we propose the azimuth fixing method to reduce azimuth velocity of X-band antenna. The experimental results show that azimuth velocity of the X-band antenna is remarkably reduced using proposed method.

Method for Maintaining Initial Azimuth of Tactical Grade IMU by Using Zero Velocity Update Algorithm (영속도 보정 알고리즘을 이용한 전술급 관성항법장치의 자세 유지 기법)

  • Kim, Suna
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.122-128
    • /
    • 2019
  • This paper describe the method for maintaining initial azimuth of tactical grade IMU. The proposed method uses the zero velocity update (ZUPT) algorithm based on Kalman filter and the azimuth information previously obtained through transfer alignment. ZUPT technique can estimate and correct navigation attitude errors using the observed velocity error without the need of other sensors. Also, ZUPT combined pre-obtained azimuth information allows to maintain initial azimuth for tactical grade IMU. We verify the performance improvement of the proposed azimuth maintaining method by simulation and test.

Study on Stopping Ability of a Ship Equipped with Azimuth Propeller

  • Park, Jong-Yong;Oh, Pilgun;Kim, Taejin;Lee, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • An azimuth propeller can generate thrust in all directions by rotating its housing with an electric motor. An azimuth propeller can be operated using several methods to stop a ship. This study aims to derive an efficient method to stop a ship safely using an azimuth propeller through full-scale maneuvering trials with the research vessel "NARA" of Pukyong National University in 4.63 m/s (9 kts). Five methods with different azimuth propeller operations were tested to stop the ship. The test results confirmed that the simultaneous use of the thrust and the hydrodynamic force acting on the strut is the most effective method to stop the ship.

Threat Decision Algorithm of Missile Warning Radar Using Azimuth Angular Rate (방위각 변화율을 이용한 방호용레이다 위협 판단 알고리즘)

  • Ha, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.93-101
    • /
    • 2008
  • It is difficult for a MWR(Missile Warning Radar) to perform a threat decision accurately since there is no tracking part which gives more accurate threat information to the MWR. In this paper, the threat decision algorithm is proposed using an azimuth angular rate to improve the accuracy. The azimuth angular rate is dependent upon the direction of an approaching target. The target is classified into a threat or non-threat using a boundary condition of the azimuth angular rate. The boundary condition is determined using the Monte-Carlo simulation. The performance of the proposed algorithm is evaluated using this condition at field tests of MWR. The efficiency of the proposed method for the threat decision is proved by comparing the results of field tests with the simulation results.

A Design of an SARPE System considering the moving speed and direction of a vehicle (차량의 이동속도와 이동방향을 고려한 SARPE 시스템 설계)

  • Lee, ByungKwan;Jeong, Eun Hee;Jung, INa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.61-70
    • /
    • 2013
  • This paper proposes a design of SARPE(Speed and Azimuth based Routing Protocol for Emergency) system which transfers an emergency message rapidly and accurately by minimizing path disconnection with a vehicle's speed and azimuth in case of accidents. The SARPE system accomplishes the path search based on an azimuth in order to minimize unnecessary messages and workload. It also selects the paths with the lowest probability that the path disconnection will happen by using the difference between the speed(maximum, minimum) of intermediate nodes and the average speed of a source node and destination node. Therefore, this paper minimizes the path resetting work happening due to path disconnection and transfers an emergency message rapidly and accurately.

A study on indoor navigation system using localization based on wireless communication (무선통신기반 위치인식을 이용한 실내 내비게이션 시스템에 관한 연구)

  • Kim, Jung-Ha;Lee, Sung-Geun;Kim, Jong-Su;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.114-120
    • /
    • 2013
  • Recently, navigation systems based on wireless communication have been applied to the internal structures such as building or ship. If a stable azimuth information is obtained, these systems can effectively guide the direction of the user's progress through the information and then can improve the performance of guidance. Since conventional method which has acquired an azimuth information using geomagnetic and acceleration sensor(azimuth sensor hereafter) is sensitive to the effects of the magnetic field, it has unstable error range according to the surrounding environment. In order to improve these problems, this paper presents a new relative azimuth estimation algorithm using the displacement of a mobile node and its rotation angle based on Wireless communication. For the performance assessment of the proposed algorithm, experiments using rotating arm are performed and the results are confirmed that the proposed system can estimate the relative azimuth without using additional sensors.

SDINS/GPS/ZUPT Integration Land Navigation System for Azimuth Improvement (방위각 개선을 위한 SDINS/GPS/ZUPT 결합 지상 항법 시스템)

  • Lee, Tae-Gyoo;Cho, Yun-Cheol;Jang, Suk-Won;Park, Jai-Yong;Sung, Chang-Ky
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.5-12
    • /
    • 2006
  • This study describes an SDINS/GPS/ZUPT integration algorithm for land navigation systems. The SDINS error can be decoupled in two parts. The first part is the the Schuler component which does not depend on object motion parameters, and the other is the Non-Schuler part which depends on the product of object acceleration and azimuth error. Azimuth error causes SDINS error in proportion to the traversed distance. The proposed system consists of a GPS/SDINS integration system and an SDINS/ZUPT integration system, which are both realized by an indirect feedforward Kalman filter. The main difference between the two is whether the estimate includes the Non-Schuler error or not, which is decided by the measurement type. Consequently, subtracting GPS/SDINS outputs from SDINS/ZUPT outputs provide the Non-Schuler error information which can be applied to improving azimuth accuracy. Simulation results using the raw data obtained from a van test attest that the proposed SDINS/GPS/ZUPT system is capable of providing azimuth improvement.

Azimuth Accuracy Test of Phase Comparison Direction Finding Method Using F-16 Fighter Scale-down Model (F-16 전투기 축소모델을 사용한 위상비교 방향 탐지 기법의 방위각 정확도 시험)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Young-Ho;Kim, Kichul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.83-88
    • /
    • 2017
  • This paper describes the azimuth accuracy test of phase comparison direction finding method using F-16 fighter scale-down model. When the antennas are placed on the bottom of a fighter, reflection signals caused by an aircraft structure arises and an azimuth error occurs. In this research, the F-16 fighter scale-down model was made to 5:1, and five antennas were placed on the bottom of the model, then the radio waves of emitters were received by the antennas in the $0-360^{\circ}$ azimuth angles. The accuracy test was performed by numerically analyzing the phases of the radio waves received by the five antennas. The azimuth error of the phase comparison direction finding with scale-down model was measured to be less than $0.5^{\circ}$ when the signal noise ratio was larger then 0dB, and it could be very useful for the design of the phase comparison direction finding method of the fighter.

IFSAR, Azimuth Aliasing Resolution, and Interferogram Generation Algorithms (IFSAR, 방위방향 Aliasing 제거 및 인터페로그램 생성 생성 알고리즘)

  • 홍인표;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.397-402
    • /
    • 2002
  • The IFSAR technique using SAR data has various applications and is the only latest technology to produce high precision height information from the radar phase data. This paper describes the whole implementation algorithm of IFSAR technique. Also it suggests the algorithms for azimuth aliasing resolution and interferogram generation of SAR data. Those are proved through the experiment: azimuth aliasing is resolved and interferogram is generated properly. Therefore, it proposes the method for interferogram generation, an essential process in extracting high precision height data, and the development approach to principal modules of IFSAR algorithm.

A Vector-based Azimuth Algorithm using Indoor-Positioning Systems for Mobile Nodes (이동노드의 실내위치파악 시스템을 통한 벡터기반 상대방위각 알고리즘)

  • Son, Joo-Young
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Indoor-positioning systems are useful to various applications. Navigation system is one of the most popular applications, which needs the information of directions of nodes' movements. Specifically the applications should get the information in real-time to properly show the current moving position of a node. In this paper, simple vector-based algorithms are proposed to compute amount and direction of changes of azimuth of mobile nodes' heading directions using existing indoor positioning systems in indoor environments where azimuth sensors do not work properly. Previous algorithms calculate the azimuth changes by too many steps of topology-based formula. The algorithms proposed in this paper get the amount of changes of azimuth by simple formula based on vector, and determine the direction of changes by the sign of value of simple formula based on the previous movement of nodes. The algorithms are much simpler and less error-prone than previous ones, and then they can detect changes in many location-based applications as well. The performance of the algorithms is proved logically and mathematically.