• 제목/요약/키워드: Azimuth Angular Rate

검색결과 7건 처리시간 0.022초

방위각 변화율을 이용한 방호용레이다 위협 판단 알고리즘 (Threat Decision Algorithm of Missile Warning Radar Using Azimuth Angular Rate)

  • 하종수
    • 한국군사과학기술학회지
    • /
    • 제11권1호
    • /
    • pp.93-101
    • /
    • 2008
  • It is difficult for a MWR(Missile Warning Radar) to perform a threat decision accurately since there is no tracking part which gives more accurate threat information to the MWR. In this paper, the threat decision algorithm is proposed using an azimuth angular rate to improve the accuracy. The azimuth angular rate is dependent upon the direction of an approaching target. The target is classified into a threat or non-threat using a boundary condition of the azimuth angular rate. The boundary condition is determined using the Monte-Carlo simulation. The performance of the proposed algorithm is evaluated using this condition at field tests of MWR. The efficiency of the proposed method for the threat decision is proved by comparing the results of field tests with the simulation results.

지상 기동 장비용 펄스 도플러 레이더의 방위각 계산 알고리즘 (The Azimuth Calculation Algorithm of Pulse-Doppler Radar for GVES)

  • 박규철;하종수
    • 한국전자파학회논문지
    • /
    • 제21권9호
    • /
    • pp.947-954
    • /
    • 2010
  • 지상 기동 장비용 펄스 도플러 레이더에서 표적에 대한 위협 판단이 매우 중요하다. 위협 판단은 방위각 변화율에 따라 결정되고, 정확한 방위각 계산에 의해 위협 판단 성능이 좋아지기 때문에 방위각 계산 알고리즘이 매우 중요하다. 방위각 변화율은 접근하는 표적의 방향에 관계되며, 표적은 방위각 변화율의 경계 값에 따라 위협 또는 비위협으로 구분된다. 본 논문은 8개의 방위각 계산 방법을 제시하고, 결과를 비교하였다.

An Algorithmic Study on Free-gyro Positioning System( I ) - Measuring Nadir Angle by using the Motion Rate of a Spin Axis -

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • 한국항해항만학회지
    • /
    • 제31권9호
    • /
    • pp.751-757
    • /
    • 2007
  • The authors aim to establish the theory necessary for developing free gyro positioning system and focus on measuring the nadir angle by using the motion rate of a free gyro. The azimuth of a gyro vector from the North can be given by using the property of the free gyro. The motion rate of the spin axis in the gyro frame is transformed into the platform frame and again into the NED (north-east-down) navigation frame. The nadir angle of a gyro vector is obtained by using the North components of the motion rate of the spin axis in the NED frame. The component has to be transformed into the horizontal component of the gyro by using the azimuth of the gyro vector and then has to be integrated over the sampling interval.

항공기 형상에 대한 근전계 RCS 측정에서 내삽 알고리즘을 이용한 측정시간 단축에 대한 분석 (An Analysis on the Reduction of Measurement Time Using Interpolation Algorithm in Near-field RCS Measurements for Aircraft Shape)

  • 박호민
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.339-346
    • /
    • 2022
  • The importance of stealth technology is increasing in modern warfare, and Radar Cross Section(RCS) is widely used as an indicator of stealth technology. It is useful to measure RCS using an image-based near-field to far-field transformation algorithm in short-range monostatic conditions. However, the near-field measurement system requires a longer measurement time compared to other methods. In this work, it is proposed to reduce the measured data using an interpolation method in azimuth angular domain. The calculated far-field RCS values according to the sampling rate is shown, and the performance of the algorithm applied with interpolation in the angular domain is presented. It is shown that measurement samples can be reduced several times by using the redundancy in the angular domain while producing results similar to the conventional method.

Performance Enhancement of a Satellite's Onboard Antenna Tracking Profile using the Ground Station Searching Method

  • Song, Young-Joo;Lee, Jung-Ro;Kang, Jihoon;Jeon, Moon-Jin;Ahn, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.391-400
    • /
    • 2016
  • In satellite operations, stable maneuvering of a satellite's onboard antenna to prevent undesirable vibrations to the satellite body is required for high-quality high-resolution images. For this reason, the onboard antenna's angular rate is typically minimized while still satisfying the system requirement that limits the speed of the onboard antenna. In this study, a simple yet effective method, called the ground station searching method, is proposed to reduce the angular rate of a satellite's onboard antenna. The performance of the proposed method is tested using real flight data from the KOMPSAT-3 satellite. Approximately 83% of arbitrarily selected real flight scenarios from 66 test cases show reductions in the onboard antenna's azimuth angular rates. Additionally, reliable solutions were consistently obtained within a reasonably acceptable computation time while generating an onboard antenna tracking profile. The obtained results indicate that the proposed method can be used in real satellite operations and can reduce the operational loads on a ground operator. Although the current work only considers the KOMPSAT-3 satellite as a test case, the proposed method can be easily modified and applied to other satellites that have similar operational characteristics.

A POSITION TRACKING ALGORITHM WITH RADAR MEASUREMENT

  • Lim You-Chol;Ma Keun-Su;Lee Jae-Deuk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.332-336
    • /
    • 2004
  • This paper describes the remote tracking algorithm using measurements (azimuth, elevation, and slant range) of the radar ground station. Kalman filter model for noise reduction of the measured information is first derived by linearizing with respect to angle, angular rate, range, and range rate. And then a tracking algorithm is introduced to calculate the position of the vehicle during in-flight. The simulation results show that the algorithm is practical and effective enough tracking position of the vehicle in considerably less error.

  • PDF

A New Approach for SINS Stationary Self-alignment Based on IMU Measurement

  • Zhou, Jiangbin;Yuan, Jianping;Yue, Xiaokui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.355-359
    • /
    • 2006
  • For the poor observability of azimuth misalignment angle and east gyro drift rate of the traditional initial alignment, a bran-new SINS stationary fast self-alignment approach is proposed. By means of analyzing the characteristic of the strapdown inertial navigation system (SINS) stationary alignment seriously, the new approach takes full advantage of the specific force and angular velocity information given by inertial measurement unit (IMU) instead of the mechanization of SINS. Firstly, coarse alignment algorithm is presented. Secondly, a new fine alignment model for SINS stationary self-alignment is derived, and the observability of the model is analysed. Then, a modified Sage-Husa adaptive Kalman filter is introduced to estimate the misalignment angles. Finally, some computer simulation results illustrate the efficiency of the new approach and its advantages, such as higher alignment accuracy, shorter alignment time, more self-contained and less calculation.

  • PDF