• Title/Summary/Keyword: Azimuth Angle

Search Result 300, Processing Time 0.028 seconds

The Study on Optimum Installation angle of Photovoltaic Arrays using the Expert System (전문가시스템을 이용한 태양광 어레이의 최적설치 각도에 관한 연구)

  • Yu, Gwon-Jong;Lee, Yo-Han;So, Jung-Hun;Seong, Se-Jin;Yu, Byung-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.107-115
    • /
    • 2007
  • The measured solar radiation incident on tilted surfaces has been widely used as important solar radiation data in installing photovoltaic arrays. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar photovoltaic systems. This is because the performance of the solar photovoltaic systems is much affected by angle and direction of incident rays. The expert system can predict the optimum installation angle of photovoltaic arrays with those factors.

KFLOW Results of Airloads on HART-II Rotor Blades with Prescribed Blade Deformation

  • Sa, Jeong-Hwan;Kim, Jee-Woong;Park, Soo-Hyung;Park, Jae-Sang;Jung, Sung-Nam;Yu, Yung-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.52-62
    • /
    • 2009
  • A three-dimensional compressible Navier-Stokes solver, KFLOW, using overlapped grids has recently been developed to simulate unsteady flow phenomena over helicopter rotor blades. The blade-vortex interaction is predicted for a descending flight using measured blade deformation data. The effects of computational grid resolution and azimuth angle increments on airloads were examined, and computed airloads and vortex trajectories were compared with HART-II wind tunnel data. The current method predicts the BVI phenomena of blade airloads reasonably well. It is found from the present study that a peculiar distribution of vorticity of tip vortices in an approximate azimuth angle range of 90 to 180 degrees can be explained by physics of the shear-layer interaction as well as the dissipation of numerical schemes.

Hybrid Car Navigation System using GPS and Dual Electric Compass (GPS와 듀얼 전자 컴파스를 이용한 차량의 혼합항법시스템)

  • Kim Yang-Hwan;Choi Byoung-Suk;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.106-112
    • /
    • 2006
  • A new model for the continuous-magnetic interferences has been proposed in this paper to remove external interferes of magnetic field to the dual electric compass. By this removal, the dual electric compass can be used for proving the azimuth angle in an automobile navigation system instead of the rate gyroscope. In the navigation system with a GPS receiver, a DR sensor such as a rate gyroscope is needed to overcome the shielded areas, which is relatively expensive and requires frequent calibrations. However the dual electric compass designed by this research is cheap and provides absolute azimuth angle precisely, which is beneficiary to be used as a DR sensor. The main contribution of this paper is that the long-lasting magnetic interferences have been removed out by using the proposed model, which never be studied before. With a hybrid navigation system using a DR sensor, we demonstrated that dual electric compass is better than a rate gyroscope in terms of both economics and performances.

Analysis of Geological Lineaments with Compensation of the Sun's Azimuth Angle (태양방위각 보상에 의한 지질학적 선구조 분석)

  • Lee Jingeol;Lee Gyoubong;Hwang Sang-Gi
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.178-185
    • /
    • 1999
  • Geological structures such as fault and fracture patterns provide important information about preliminary exploration of mineralized areas and geological characterization. They may be recognized and interpreted from satellite images as line-like features usually referred to as lineaments. A proposed filtering method taking the sums azimuth angle into account is utilized, by which linear edges from low contrast areas where features extend parallel to the sun direction and in mountain shadow can be effectively extracted. Then, generalized Hough transform is applied to extract lineaments which correspond to fault and fracture patterns.

  • PDF

Stability Analysis of the Karman Boundary-Layer Flow

  • Lee, Yun-Yong;Hwang, Young-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.50-63
    • /
    • 2002
  • The Karman boundary-layer has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type I instability. This early transition is due to the excitation of the Type II. Presented are the neutral stability results concerning these instabilities by solving newly formulated stability equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from ${Re}_{c.1}$=285.3 to 270.2 and the value corresponding to Type II from ${Re}_{c.2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved fro)m $k_1$=0.378 to 0.386 for Type I; from $k_2$=0.279 to 0.385 for Type II. For Type II, the upped limit of wave number and azimuth angle is $k_u$=0.5872, $\varepsilon_u$=$-17.5^{\circ}$, while its lower limit is near $k_u$=0, $\varepsilon_u$=$-28.4^{\circ}$. This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

A Study on the Improvement of the Image Quality for UAV Using Drift Compensation (편류보정을 통한 무인항공기 영상품질 향상에 관한 연구)

  • Lee, Mal-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.405-412
    • /
    • 2013
  • Purpose: In this paper, the improvement of the image quality is investigated. The image quality is degraded by the drift phenomenon of EO/IR (Electro-Optical/Infrared) device on UAV. The drift phenomenon means that the image of EO/IR equipment on UAV(Unmanned Aerial Vehicle) moves to the unintended direction. This phenomenon should be improved for successful flight mission. Methods: To improve the drift phenomenon, the drift compensation method, the combination algorithm of FMC(Forward Motion Compensation) and AMC(Angular Motion Compensation) method, are introduced to calculate pitch and azimuth angle. Result values of pitch and azimuth angle are used for the improvement of image quality in EO/IR control logic. Results: The image quality is quantitatively improved more than 15 times through field test data of flight. Conclusion: Using the drift compensation technique, the image quality for EO/IR equipment is improved over 15 times than existing methods. This means the user of UAV with EO/IR device can perform a successful mission by keeping the line of sight for the target accurately.

Stability of the K rm n Boundary Layer Flow (Karman 경계층 유동의 안정성에 관한 연구)

  • 황영규;이윤용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.771-781
    • /
    • 2000
  • The Karman boundary-layer, has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type 1 mode of instability. This early transition is due to the excitation of the Type II mode. Presented are the neutral stability results concerning these modes by solving new formulated vorticity equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from Rec,! =285.3 to 270.2 and the value corresponding to Type II is from $Re_{c,2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved from $k_1$ =0.378 to $k_1$ =0.389 for Type I; from $k_2$ =0.279 to $k_2$=0.385 for Type II. For Type II, the upper limit of wave number and azimuth angle is $k_U$=0.5872,$varepsilon_U=-18^{\circ}$ , while its lower limit is$k_L$ =0.05, $varepsilon_L=-27^{\circ}$ This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

  • PDF

Development of Tracking Algorithm to Improve Accuracy of Altitude and Azimuth (태양 고도각 및 방위각 제어의 정확도 향상을 위한 추적 알고리즘 개발)

  • Back, Jung-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Kang, Sung-Jun;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.219-221
    • /
    • 2009
  • This paper analyzes efficiency of photovoltaic(PV) tracking system using solar location algorithm(SLA). Solar location tracking system is needed for efficiently and intensively using PV system independent of environmental condition. PV tracking system of program method is presented a high tracking accuracy without the wrong operating in rapidly changed insolation by the clouds and atmospheric condition. Therefore, this paper analyzes efficiency of PV system using SLA for more correct position tracking of solar. Also, controlled altitude angle and azimuth angle by applied algorithm is compared with data of korea astronomy observatory. And this paper analyzes the tracking error and proves the validity of applied algorithm.

  • PDF

A Study on magnetic sensor calibration for indoor smartphone position tracking (스마트폰 실내 위치 추적을 위한 지자기 센서 보정에 관한 연구)

  • Lee, Dongwook;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.229-235
    • /
    • 2018
  • Research on indoor location tracking technology using smart phone is actively being carried out. Especially, in order to display the movement path of the smartphone on the map, the azimuth angle should be estimated by using the geomagnetic sensor built in most smart phones. Due to the distortion of the magnetic field due to the surrounding steel structure and the inclination of the smartphone, the estimation error of azimuthal angle may be occurred. In this paper, we propose a correction method of the geomagnetic sensor at the stationary state and a correction method for the inclination of the smartphone. We also propose a method to correct the azimuth error due to the difference between the magnetic north and the grid north.

Biaxial Accelerometer-based Magnetic Compass Module Calibration and Analysis of Azimuth Computational Errors Caused by Accelerometer Errors (2 축 가속도계 기반 지자기 센서 모듈의 교정 및 가속도계 오차에 의한 방위각 계산 오차 분석)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • A magnetic compass module must be calibrated accurately before use. Moreover, the calibration process must be performed taking into account any magnetic dip if the magnetic compass module has tilt angles. For this, a calibration method for a magnetic compass module is explained. Tilt error of the magnetic compass module is compensated using a biaxial accelerometer generally. The accelerometer error causes a tilt angle calculation error that gives rise to an azimuth calculation error. For error property analysis, error equations are derived and simulations are performed. In the simulation results, the accuracy of derived error equations is verified. If a biaxial magnetic compass module is used instead of a triaxial one, the magnetic dip and z-axis magnetic compass data must be estimated for tilt compensation. Lastly, estimation equations for the magnetic dip and z-axis magnetic compass data are derived, and the performance of the equations is verified based on a simulation.