• 제목/요약/키워드: Axons

검색결과 116건 처리시간 0.024초

한국사람태아 내망막층 발생에 관한 미세구조적 연구 (An Ultrastructural Study on the Development of Inner Retinal Layer in Korean Human Fetuses)

  • 김백윤;양형모;윤재룡
    • Applied Microscopy
    • /
    • 제30권2호
    • /
    • pp.121-139
    • /
    • 2000
  • 망막 발육에 관한 연구는 광수용세포와 외망상층에 대해서 집중적으로 연구되어 왔고 내망상층의 연구는 초기 발육에 관한 연구가 보고된 바 있다. 본 연구는 태생 초기부터 말기까지의 인태아를 대상으로 내핵층의 신경모세포의 분화, 발육과 내망상층에서 신경연접 형성 과정을 전자현미경으로 관찰하여 다음과 같은 결과를 얻었다. 좌고 30mm(태령 9주)때 망막은 외신경모세포와 내신경모세포로 분화, 발육하였고 외신경모세포의 분열은 90mm(태령 14주)때까지 진행되었다. Chievitz층은 30mm때, 내망상층은 50mm(태령 11주)때, 외망상층은 150 mm때 각각 형성되었다. 신경절세포는 자유리보솜이 세포 전역에 분포하고 있었고 조면내형질망, 골지장치, 미세소관 및 농소체를 함유하고 있었다. 30mm때 뮐러세포는 신경절세포의 축삭사이로 돌기를 내고 있었고 초자체쪽에서 내경계막을 형성하였으며 90mm때는 뮐러세포의 돌기는 방사상으로 배열하고 있으며 다량의 활면내형질망을 함유하고 있었다. 신경연접은 50mm때 연접막비후는 존재하면서 연접소포를 내포하고 있지 않은 연접이 관찰되었고, 연접소포를 내포하고 있는 보통연접이 90mm때, 리본연접은 150mm때 각각 출현하였다. 260mm(태령 30주)때 연접소포가 없는 연접, 보통연접 및 리본연접 등 성인에서 출현하는 세 가지 연접이 모두 관찰되었다.

  • PDF

가토의 좌골신경에 Morphine, Meperidine, Pentazocine을 주사한 후 미세형태학적 및 신경생리학적 변화 (Ultrastructural and Neurophysiological Changes Observed Following Injection of Morphine, Meperidine and Pentazocine in the Sciatic Nerves of Rabbits)

  • 전재규;김세연;배정인
    • The Korean Journal of Pain
    • /
    • 제5권2호
    • /
    • pp.213-220
    • /
    • 1992
  • Morphine, meperidine 및 pentazocine을 가토의 좌골신경에 주입한 후 마약제의 신경차단 유무와 약제 주입 후 4시간, 24시간 및 1주에 좌골 신경을 절취하여 신경조직학적 변화를 관찰하였다. 좌골신경에 약제를 주입한 후 신경자극에 의한 반응과 뒷다리 운동을 관찰한 결과, morphine군은 신경차단 효과가 없었고 meperidine군과 pentazocine군은 약제주입 5분 후부터 근육이완이 시작되어 10분 후부터 근육수축이 나타나지 않았으며 뒷다리에 마비증상은 약제주입 60분 후부터 부분적으로 회복되기 시작하여 90분 후에는 정상으로 회복되는 양상의 신경차단 효과가 있었다. 광학 현미경적 소견으로는 모두 4시간부터 1주까지의 표본에 특기할만한 변화가 없었으며, 전자 현미경적 소견에서 morphine군은 1주 후 소견에서 유수신경섬유와 무수신경섬유에 경미한 수포양을 보였다. Meperidine군은 4시간 후 소견으로 유수신경섬유의 축삭돌기에 경미한 수포양이 있었고 무수신경의 마이엘린화되는 소견이 있었으며, 24시간 후 유수신경섬유에 경미한 수포양이 있었고 무수신경섬유가 정상으로 되었으며 1주 후 특기할 만한 변화가 없었다. Pentazocine군은 약제주입 4시간 후 유수신경섬유에 경미한 수포양을 보였으며 24시간 후 유수신경 섬유와 무수신경섬유에 중등도의 수포양이 나타났으며 1주 후 경미한 수포양을 나타내었다. 주입된 약제중 morphine이 가장 수포양이 적었으며 pentazocine이 심한 변화를 나타내었고, 전단계 쥐 실험에서 나타났던 meperidine주입 1주 후의 심한 신경조직 손상은 본 실험에서 나타나지 않았다.

  • PDF

Enhanced Efficacy of Human Brain-Derived Neural Stem Cells by Transplantation of Cell Aggregates in a Rat Model of Parkinson's Disease

  • Shin, Eun Sil;Hwang, Onyou;Hwang, Yu-Shik;Suh, Jun-Kyo Francis;Chun, Young Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제56권5호
    • /
    • pp.383-389
    • /
    • 2014
  • Objective : Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. Methods : Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[$^{18}F$]-fluoro-D-glucose ([$^{18}F$]-FDG) and [$^{18}F$]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([$^{18}F$]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. Results : The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [$^{18}F$]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human ${\beta}2$ microglobulin (a human cell marker) positive cells were visualized at the transplant site. Conclusion : These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine.

인체 지방조직에서 유래한 줄기세포의 신경세포 분화능 및 신경재생 유도효과 (The Effects of Adipose Derived Stem Cells on Neurogenic Differentiation and Induction of Nerve Regeneration)

  • 전영준;이종원;최윤석;김영진;김성은;이종인;한기택
    • Archives of Plastic Surgery
    • /
    • 제33권2호
    • /
    • pp.205-212
    • /
    • 2006
  • Using adipose derived stem cells(ASCs), neurogenic differentiation was induced in a mono layered culture medium containing neuronal induction agents. Cells differentiated to the neuronal cells were observed with a inverted microscope and immunofluorecent study. We made a 15 mm long defect in the sciatic nerve of 14 rats and connected a silicone tube to the defect. Then, we mixed neuronal progenitor cells differentiated from ASCs with collagen gel and grafted them to a group of rats(experimental group) and grafted only collagen gel into another group(control group). In 4 and 8 weeks after the graft, histological observation was made. According to the result, the number and diameter of myelinated axons were significantly increased in the experimental group. In addition, the nerve conduction velocity was improved more in the experimental group and neovascularity also increased. Moreover, reaction with S100 and p75 was observed in regenerated nerves in the experimental group, suggesting that the grafted cells were differentiated into supportive cells such as Schwann's cells. In conclusion, this research proved that ASCs can multiply and differentiate into neuronal cells. If they are grafted into nerve defects, the grafted cells are differ entiated into supportive cells such as Schwann's cells and thus contribute to nerve regeneration. Accordingly, the use of adipose tissue obtained easily without the limitation of donor site can be greatly helpful in treating peripheral nerve defects.

늑간 신경 냉동요법에 의한 개흉술후 흉부 동통 관리 (Cryoanalgesia for the Post-thoracotomy Pain)

  • 김욱진;최영호;김형묵
    • Journal of Chest Surgery
    • /
    • 제24권1호
    • /
    • pp.54-63
    • /
    • 1991
  • Post-thoracotomy pain is so severe that lead to postoperative complications, such as sputum retention, segmental or lobar atelectasis, pneumonia, hypoxia, respiratory failure due to the patient`s inability to cough, deep breathing and movement. Many authors have been trying to reduce the post-thoracotomy pain, but there is no method of complete satisfaction. In 1974, Nelson and associates introduced the intercostal nerve block using the cryoprobe. The application of cold directly to the nerves causes localized destruction of the axons while preserving the endoneurium and connective tissue, thereby introducing a temporary pain block and able to complete regeneration of intercostal nerves. One hundred and two patients, who undergoing axillary or posterolateral thoracotomy at the Department of Thoracic and Cardiovascular Surgery in Korea University Medical Center between April 1990 and August 1990, were evaluated the effects of cryoanalgesia for the post-thoracotomy pain reduction. The patients were divided into two groups: Group A, control, the patients without the cryoanalgesia[No.=50], Group B, trial, the patients with cryoanalgesia[No.=52]. Before the thorax closed, in the group A, local anesthetics, 2% lidocaine 3cc, were injected to the intercostal nerves[one level with the thoracotomy, one cranial and caudal intercostal level and level of drainage tube insertion]. In the group B, cryoprobe was directly applied for 1 minute at the same level. Postoperative analgesic effects were evaluated by the scoring system which made arbitrary by author: The pain score 0 to 4, The limitation of motion score 0 to 3, The analgesics consumption score 0 to 3, The total score, the sum of above score, 0 to 10. For the evaluation of immediate analgesic effects, the score were evaluated at the operative day, the first postoperative day, the second postoperative day, and the seventh postoperative day. The effects of incision type, and rib cut to the post-thoracotomy pain were also evaluated. The results were as follows; 1. The intercostal block with cryoanalgesia reduced the immediate postoperative pain significantly compare with control group. 2. The intercostal block with cryoanalgesia improved the motion of the operation side significantly compare with control group. 3. The intercostal block with cryoanalgesia reduced the analgesics requirements at the immediate postoperative periods significantly. 4. The intercostal block with cryoanalgesia lowered the total score significantly compare with control group. 5. The intercostal block with cryoanalgesia were more effective to the mid-axillary incision than to the posterolateral incision 6. The intercostal block with cryoanalgesia were more effective to the patients without rib cut than to the patients with rib cut. 7. No specific complication need to be treated were not occurred during follow-up.

  • PDF

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

Impulse Trafficking in Neurons of the Mesencephalic Trigeminal Nucleus

  • Saito, Mitsuru;Kang, Young-Nam
    • International Journal of Oral Biology
    • /
    • 제31권4호
    • /
    • pp.113-118
    • /
    • 2006
  • In the primary sensory neuron of the mesencephalic trigeminal nucleus (MTN), the peripheral axon supplies a large number of annulospiral endings surrounding intrafusal fibers encapsulated in single muscle spindles while the central axon sends only a few number of synapses onto single ${\alpha}-motoneurons({\alpha}-MNs)$. Therefore, the ${\alpha}-{\gamma}$ linkage is thought to be very crucial in the jaw-closing movement. Spike activity in a ${\gamma}-motoneuron\;({\gamma}-MN)$ would induce a large number of impulses in single peripheral axons by activating many intrafusal fibers simultaneously, subsequently causing an activation of ${\alpha}-MNs$ in spite of the small number of synapses. Thus, the activity of ${\gamma}-MNs$ may be vital for modulation of jaw-closing movements. Independently of such a spindle activity modulated by ${\gamma}-MNs$, somatic depolarization in MTN neurons is known to trigger the oscillatory spike activity. Nevertheless, the trafficking of these spikes arising from the two distinct sources of MTN neurons is not well understood. In this short review, switching among multiple functional modes of MTN neurons is discussed. Subsequently, it will be discussed which mode can support the ${\alpha}-{\gamma}$ linkage. In our most recent study, simultaneous patch-clamp recordings from the soma and axon hillock revealed a spike-back-propagation from the spike-initiation site in the stem axon to the soma in response to a somatic current pulse. The persistent $Na^+$ current was found to be responsible for the spike-initiation in the stem axon, the activation threshold of which was lower than those of soma spikes. Somatic inputs or impulses arising from the sensory ending, whichever trigger spikes in the stem axon first, would be forwarded through the central axon to the target synapse. We also demonstrated that at hyperpolarized membrane potentials, 4-AP-sensitive $K^+$ current ($IK_{4-AP}$) exerts two opposing effects on spikes depending on their origins; the suppression of spike initiation by increasing the apparent electrotonic distance between the soma and the spike-initiation site, and the facilitation of axonal spike invasion at higher frequencies by decreasing the spike duration and the refractory period. Through this mechanism, the spindle activity caused by ${\gamma}-MNs$ would be safely forwarded to ${\alpha}-MNs$. Thus, soma spikes shaped differentially by this $IK_{4-AP}$ depending on their origins would reflect which one of the two inputs was forwarded to the target synapses.

배양한 흰쥐 대뇌신경세포에서 신경미세섬유 3(NF-M)의 발생학적 표현 (Developmental Expression of Neurofilament 3 (NF-M) in the Cultured Rat Cortical Neurons)

  • 정재섭;조선정;진익렬;정승현;문일수
    • 생명과학회지
    • /
    • 제15권4호
    • /
    • pp.600-606
    • /
    • 2005
  • 신경미세섬유(neurofilament, NF) 단백질은 신경세포의 주된 중간세사로서, NF-L (61 kDa), NF-M (90 kDa) 및 NF-H (115 kDa) 단백질의 공동중합체로 구성된다. 신경세사섬유는 신경세포의 성장, 구성, 형태 및 가소성에 중요한 역할을 하지만 발생학적 표현에 대하여는 아직 잘 알려지지 않았다. 본 연구에서는 NF-M에 특이한 항체를 제조하여 배양한 대뇌신경세포에서 NF-M의 표현을 조사하였다. 배양 12 및 24시간 세포에서 NF-M은 축삭과 그 성장추 그리고 축삭에 가까운 세포체에 강하게 표현하였다. 배양 4 및 14일 신경세포를 NF-M과 PSD95 항체로 이중염색한 결과 NF-M은 축삭과 가지돌기에 공히 강하게 표현되었으며, PSD95와 같이 위치할 경우에는 점박이로 나타났다. .면역염색에서도 NF-M이 PSD 분획에서 검출되었는데, 따라서 이 점박이는 가지돌기가시임을 시사한다. 본 연구의 결과는 NF-M이 신경세포의 초기 형태발달과정에서 축삭으로 강하게 몰려가며, 성숙한 신경세포에서는 가지돌기 및 가지돌기가시에도 위치하여 특정기능을 수행함을 시사한다.

Identification of cis-Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System

  • Hong, Young Gi;Kang, Bongsu;Lee, Seongsoo;Lee, Youngseok;Ju, Bong-Gun;Jeong, Sangyun
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.228-235
    • /
    • 2020
  • The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema-1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.

방사선이 뇌실막세포의 미세구조에 미치는 영향 (Ultrastructural Study on the Ependymal Cells of the Read-Irradiated Rats)

  • 안의태;조휘동;김진국;박경호;고정식
    • Applied Microscopy
    • /
    • 제29권1호
    • /
    • pp.11-23
    • /
    • 1999
  • 머리 부분에 많은 양의 방사선을 조사 받은 흰쥐 뇌실막세포의 미세구조에 대하여 연구하였다. 체중 $200\sim250g$의 흰쥐를 실험동물로 사용하였고, 방사선 발생장치로는 Mitsubishi linear accelerator (ML-4MV)를 이용하였다. 실험군의 흰쥐는 sodium thiopental로 마취시킨 후 머리부분이 조사구역 $(30cm\times30cm)$ 안에 들도록 눕힌 후, 조사거리 80cm, 조사 깊이 1.2 cm의 조건에서 200 rad/min의 속도로 연속 조사하였다. 실험군에 따라 3,000 rad 또는 6,000 rad를 조사시킨 후 각각 6시간, 2일, 6일 후에 동물들을 희생시켰다. 희생시에는 마취된 흰쥐의 가슴을 열고 심장을 통한 관류고정을 시행하였고, 관류고정액은 1% glutaraldehyde-1% paraformaldehyde액을 사용했다. 고정된 뇌에서 가쪽뇌실벽 일부를 메어 관류고정액과 같은 고정액에 다시 고정한 후, 2% osmium tetroxide 액으로 이차고정 하였고, 이후 통상적인 방법으로 전자현미경 절편제작 및 염색과정을 거친 후 전자현미경으로 관찰한 결과 다음과 같은 결론을 얻었다. 1. 방사선조사후 6시간군부터 뇌실막세포는 종창현상을 보였고 섬모의 배열이 흐트러졌으며 부분적으로 세포질이 뇌실공간으로 돌출하였다. 2. 방사선조사후 2일군부터는 뇌실막세포의 종창현상이 심하며 뇌실막밑조직의 부종이 심했다. 3. 뇌실막세포의 돌출부분 세포질에는 섬모바닥체, 사립체, 세포질세망들이 들어 있었다. 4. 방사선조사군에서는 확장된 뇌실막세포사이공간을 통하여 뇌실막밑층의 축삭성분 등이 뇌실속 까지도 돌출하였다. 이와 같은 결과로 보아 방사선조사에 의해 뇌실막세포에는 심각한 형태학적 변화가 초래되며, 이로써 뇌실질과 뇌척수액사이의 대사관문이 교란될 것으로 생각된다.

  • PDF