• Title/Summary/Keyword: Axoneme

Search Result 73, Processing Time 0.026 seconds

Anatomical Ultrastructure of Spermiogenesis and Spermatozoa of Pseudobagrus fulvidraco (Siluriformes: Bagridae) from Korea (한국산 동자개(Pseudobagrus fulvidraco)의 정세포변형과정과 성숙한 정자의 미세해부학적 구조(Siluriformes: Bagridae))

  • Kim, Kgu-Hwan;Kwon, Deok-Mun
    • Korean Journal of Ichthyology
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • The spermiogenesis and mature spermatozoa of Pseudobagrus fulvidraco were described by means of scanning and transmission electron microscopy. Spermiogenesis is characterized by lateral development of the flagellum, nuclear rotation, deep nuclear fossa formation and compaction into thick granules. The spermatozoa exhibit a round head containing a nucleus that lacks an acrosome, and having a midpiece and a flagellum. The midpiece is small and has a short cytoplasm including several mitochondria separated from the tail by the cytoplasmic canal. The flagellum contains the 9+2 classical axoneme structure and has two axonemal fins. The presence of axonemal fins in the flagellum is a common character in Bagridae. The interrelationships among the Bagridae as well as other teleosts are herein discussed.

Spermatogenesis and Sperm Ultrastructure of the Marsh Clam (Corbicula japonica) (Bivalvia: Veneridae) (기수재첩 (Corbicula japonica)의 정자형성과정과 정자 미세구조)

  • LEE Jeong Yong;KIM Wan Ki;LEE Chae Sung;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.281-286
    • /
    • 2004
  • Spermatogenesis and sperm ultrastructure of the marsh clam (Corbicula japonica) were investigated by electron microscopic observations. Testis of the marsh clam consists of numerous spermatogenic follicle containing germ cells in the different developmental stages. Spermatogonia are located nearest the outer wall of the follicle, while spermtocytes and spermatids are positioned nearer to the lumen. Spematogonia are oval-shaped and about $5{\mu}m$ In diameter. Spermatogonia develop into spermatocyte, spermatid and spermatozoon. In the spermatid to about $2{\mu}m$ in diameter, cytoplasm decreases and mitochondria move to the base of the nucleus and fuse into several spheres, the centrioles become orthogonally oriented, a flagellum appears, and an acrosomal vesicle forms. The mature sperm has primitive type, consisting of a head, a midpiece and a tail. The sperm was arrow-shaped, and its head is about $8{\mu}m$ long and comprised of a long nucleus and an acrosome. The four mitochondria encircled the centrosome in midpiece. The flagellum had the classical 9+2 axoneme structure, and axonemal lateral fins in the tail were observed.

Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia

  • Park, Eun-Ah;Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.

Electron Microscopic Study on the Spermiogenesis of Cipangopaludina chinensis malleata (Reeve) (논우렁이[Cipangopaludina chinensis malleata (Reeve)]의 精蟲形成 過程에 관한 電子顯微鏡的 硏究)

  • Kim, Ju-Hee;Park, Won-Chul
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.121-140
    • /
    • 1986
  • The spermiogenesis of Cipangopaludina chinensis malleata began with the changes of nucleus and cytoplasm. The chromatin in the nucleus began to stack and condense around perinuclear envelope. Axonema (doublet microtubules of 9+2) appeared in the cytoplasm. After this process, the cytoplasm was protruded and the bell-shaped nucleus was located on protruding part of it. The electron dense masses were distributed throughout cytoplasm and lysed or secreted by exocytosis of lysosomal vacuoles. Especially, some mitochondria were migrated by the doublet microtubules of axonema toward nucleus. The axoneme was enclosed by electron dense materials after exocytosis of unnecessary materials for the tail formation. The electron dense masses were released and migrated into the each part through microtubules or axonemal doublet microtubules as the granular particles. These granular particles were containing glycogen. Ultimately, the condensed head developed into helical and neck region into cylindrical shape respectively. The mitochondria which have regular lamellar layers at cross axis became to middle piece, and then spermatozoon was completely matured. Thus, these phenomena showed special processes in spermiogenesis, those were as follows; chromatin in the head was condensed, the head was changed into helical shape, and cytoplasmic materials are migrated and transferred into the each part in the tail by mitochondria and microtubules.

  • PDF

Ultrastructural and Histochemical Study on the Epithelia of Digestive Tract of a Korean Slug, Incilaria fruhstorferi (한국산 산민달팽이 ( Incilaria fruhstorferi ) 소화관 상피조직의 미세구조 및 조직화학적 연구)

  • 이정찬;장남섭;한종민
    • The Korean Journal of Malacology
    • /
    • v.13 no.2
    • /
    • pp.143-160
    • /
    • 1997
  • 한국산 산민달팽이 Incilariafruhstorferi의 소화관을 부위별로 관찰하고, 소화관 상피조직을 구성하는 세포의 종류와 분포수 그리고 분비되는 과립 등을 미세구조적, 조직화학적으로 관찰하고 그 결과를 보고하고자 한다. 산민달팽이의 소화관은 식도, 위, 장, 직장 등으로 구성되어있으며, 식도는 다시 전식도, 소낭, 후식도로 나누어지고, 장은 전장과 중장, 후장 등으로 구분되었다. 소화관을 부위별롸 관찰한 결과 섬모원주상피세포 2종, 녹색과립세포 3종, 청색과립세포, 점액세포, 투명세포, 망상형세포 그리고 괴사형세포 등 모두 10종류가 확인되었다. 섬모원주세포는 A형과 B형 등 두 종으로 나뉘며, A형은 세포의 상단 자유면에 섬모와 미세융모가 밀생된데 비해, B형은 전자밀도가 높아서 검게 보이고, 장과 직장에서만 관찰되는 특징을 보였다. 섬모의 구조는 9 x 2 + 2 axoneme이었다. 녹색과립세포는 미세구조에 의해 A형, B형 그리고 C형등 3종으로 나누어지며, 소낭과 후식도, 위, 직장에서 주로 관찰되었다. A형과 B형은 Sudan black에 양성인 지방과립(1.36 x 1.6$\mu\textrm{m}$)만을 포함하고 있는데비해 C형은 글리코겐 과립도 포함하고 있었다. 청색과립세포는 10종류의 세포 중 가장 키가 크고 (35$\mu\textrm{m}$), Millon반응에 양성을 보이는 둥근과립(직경, 1.3$\mu\textrm{m}$)을 포함하고 있는데 과립들은 단백질성으로 확인되었다. 이들은 중장에서만 관찰되었다. 장과 직장에서 주로 많이 관찰되는 점액세포는 세포질 속에 전자밀도가 낮은 투명한 과립과 전자밀도가 높아서 검게 보이는 둥근과립(크기, 1.33 x 0.89$\mu\textrm{m}$)들을 포함하고 있었는데, 이들은 미성숙 시기에는 투명과립(직경, 2.66$\mu\textrm{m}$)으로 관찰되었다. PAS-alcian blue(pH 2.5)반응에서 투명과립은 alcianophillia로 나타난 반면, 검은 과립은 PAS에 양성반을을 보이며, 각각 산성점액과 중성점액과립으로 확인되었다. 투명세포는 광학현미경 관찰에서 A형과 B형으로 구분되었으나, A형은 전자현미경 관찰에서 신경내분비세포로 확인된 반며, B형은 지방과립을 소지한 지방저장세포로 각각 확인되었다. 신경내분비세포가 소지한 과립의 크기는 0.16$\mu\textrm{m}$ 정도였다. 망상형세포는 주로 위에서 관찰되는 형태가 불규칙한 작은 세포로서 세포질에 비해 큰 핵을 소지하고 있었다. 소량의 세포질 돌기에는 사립체와 과립성소포체를 포함하고 있다. 괴사형세포는 후장과 직장에서 주로 많이 관찰되고, 점액세포의 점액과립이 분비된 후, 붕괴되는 과정에서 형성된 것으로 확인되었다.

  • PDF

Spermiogenesis and Taxonomical Values of Sperm Ultrastructures in Male Mercenaria stimpsoni (Heterodonta: Veneridae)

  • Kim, Jin Hee;Son, Pal Won;Kim, Sung Han;Park, Young Je;Lee, Ki Young
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.211-218
    • /
    • 2014
  • Spermatid differentiations during spermiogenesis and sperm ultrastructures in male Mercenaria stimpsoni were investigated by transmission electron microscopic observations. In the early stage of the spermatid during spermiogenesis, a few granules and a proacrosomal granule, which is formed by the Golgi complex, become a proacrosomal vesicle. Consequently, it becomes an acrosome by way of the process of acrosome formation. The morphologies of the sperm nucleus type and the acrosome of this species have a curved cylindrical type and cap shape, respectively. The spermatozoon is approximately $48-51{\mu}m$ in length including a curved cylinderical sperm nucleus (about $4.18{\mu}m$ long), an acrosome (about $0.52{\mu}m$ in length) and tail flagellum ($42-45{\mu}m$ long). As some ultrastructural characteristics of the acrosomal vesicle, the peripheral parts of two basal rings show electron opaque part (region), while the apex part of the acrosome shows electron lucent part (region). These charateristics of the sperm belong to the family Veneridae in the subclass Heterodonta, unlike a characteristic of the subclass Pteriomorphia showing all part of the acrosome being composed of electron opaque part (region). Therefore, it is easy to distinguish the families or the subclasses by the acrosome structures. Exceptionally, In particular, a cylinder-like nucleus of the sperm is curved (the angle of the nucleus is about $80^{\circ}$), as seen in some species of Veneridae (range from $0^{\circ}$ to $80^{\circ}$). The number of mitochondria in the midpiece of the sperm of this species are four, as one of common characteristics appeared in most species except for a few species in Veneridae in the subclass Heterodonta. Cross-sectioned axoneme of the sperm tail flagellum shows a 9+2 structure.

Ultrastructural Study on Spermatogenesis and Sexual Maturation of the Male Jicon Scallop, Chlamys farreri on the West Coast of Korea

  • Chung, Ee-Yung;Park, Ki-Yeol;Song, Pal-Won
    • The Korean Journal of Malacology
    • /
    • v.21 no.2 s.34
    • /
    • pp.95-105
    • /
    • 2005
  • Gonadosomatic index, reproductive cycle, spermatogenesis and first sexual maturity of Chlamys farreri were investigated by cytological and histological observations, from January 1998 to December 1999. The gonadosomatic index (GSI) rapidly increased in April and reached a maximum in May when seawater temperature rapidly increase. Then the GSI gradually decreased from June to August when spawning occur. Accordingly, monthly changes in the GSI in males coincide with the reproductive cycle. The spermatozoon of Chlamys farreri is the primitive type found in external fertilization species. The head of the spermatozoon is approximately $2.75{\mu}m$ in length including the acrosome measuring about $0.50{\mu}m$ in length, and its tail was approximately $20{\mu}m$, the axoneme of the tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. Five spherical mitochondria around the centriole (the satellite body) appear in the middle piece of the sperm. The spawning period was from June to August and the main spawning occurs from July to August when seawater temperatures are greater than $20^{\circ}C$ The reproductive cycle of this species can be categorized into five successive stages; early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August), and spent/inactive stage (August to January). Over 50% of male scallops attained first sexual maturity between 50.0 and 60.0 mm in shell height, and 100% of those over 60.0 mm in shell height achieved maturity. Accordingly, we assume that male individuals begin reproduction at three years of age.

  • PDF

Germ Cell Differentiations During Spermatogenensis and Taxonomic Values of Mature Sperm Morphology of Pinctada martensii (Bivalvia, Pteriomorphia, Pteriidae)

  • Kim, Jin-Hee;Kim, Sung-Han;Lee, Ki-Young
    • The Korean Journal of Malacology
    • /
    • v.27 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • The ultrastructural characteristics of germ cells during spermatogenesis and mature sperm morphology in male Pinctada martensii were investigated by transmission electron microscope observation. The morphologies of the sperm nucleus and the acrosome of this species are the oval shape and cone shape, respectively. Spermatozoa are approximately $47-50{\mu}m$ in length including a sperm nucleus (about $1.24{\mu}m$ in length), an acrosome (about $0.60{\mu}m$ in length), and tail flagellum (about $45-47{\mu}m$). The axoneme of the sperm tail shows a 9+2 structure. In P. martensii in Pteriidae, a special substructure showing a thick and wide triangular shape which is composed of electron-dense opaque material (occupied about 50% of all, the upper part of the acrosomal vesicle), appeared in the upper region (part) of the acrosomal vesicle, while the lower region (part) of the acrosomal vesicle is composed of electron-lucent material. Thus, this special structure, which exist in the upper part of the acrosomal vesicle in P. martensii, is somewhat different from those of other subacrosomal vesicle in other families in subacrosomal vesicles. Therefore, we assume that the existence of a special substructure showing a thick and wide triangular shape in the acrosomal vesicle of the spermatozoon can be used as a key characteristic for identification of P. martensii or other species in Pteriidae in subclass Pteriomorphia. The number of mitochondria in the midpiece of the sperm of this species are five (exceptionally sometimes four), as one of common characteristics appear the same number of mitochondria in the same families of superfamilyies. This species in Pteriidae does not contain the axial rod and satellite fibres which appear in the species in Ostreidae in subclass Pteriomorphia. These characteristics can be used for the taxonomic analysis of the family or superfamily levels as a systematic key or tools.

Spermiogenesis and Taxonomical Values of Sperm Ultrastructures in Male Crassostrea ariakensis (Fujita & Wakiya, 1929) (Pteroirmorphia: Ostreidae) in the Estuary of the Seomjin River, Korea

  • Son, Pal Won;Chung, Jae Seung;Kim, Jin Hee;Kim, Sung Han;Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.18 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • Characteristics of the developmental stages of spermatids during spermiogenesis and phylogenetic classicfication of the species using sperm ultrastructures in male Crassostrea ariakensis were investigated by transmission electron microscope observations. The morphology of the spermatozoon of this species has a primitive type and is similar to those of Ostreidae. Ultrastructures of mature sperms are composed of broad, modified cap-shaped acrosomal vesicle and an axial rod in subacrosomal materials on an oval nucleus, four spherical mitochondria in the sperm midpiece, and satellite fibres which appear near the distal centriole. The axoneme of the sperm tail shows a 9+2 structure. Accordingly, the ultrastructural characteristics of mature sperm of C. ariakensis resemble to those of other investigated ostreids in Ostreidae in the subclass Pteriomorphia. In this study, particularly, two transverse bands (stripes) appear at the anterior region of the acrosomal vesicle of this species, unlike two or three transverse bands (stripes) in C. gigas. It is assumed that differences in this acrosomal substructure are associated with the inability of fertilization between the genus Crassostrea and other genus species in Ostreidae. Therefore, we can use sperm ultrastructures and morphologies in the resolution of taxonomic relationships within the Ostreidae in the subclass Pteriomorphia. These spermatozoa, which contain several ultrastructures such as acrosomal vesicle, an axial rod in the sperm head part and four mitochondria and satellite fibres in the sperm midpiece, belong to the family Ostreidae in the subclass Pteriomorphia.

Spermiogenesis in the Korean Squirrel, Tamias sibiricus (다람쥐(Tamias sibiricus)의 정자변태)

  • Jung, Tae-Dong;Lee, Jung-Hun;Kim, Sang-Sik
    • Applied Microscopy
    • /
    • v.34 no.3
    • /
    • pp.159-170
    • /
    • 2004
  • Spermiogenesis in the Korean squirrel, Tamias sibiricus, was investigated by transmission electron microscopy. Spermiogenesis was divided into Golgi, cap, acrosome, maturation and spermiation phases based on the characteristics of acrosomal changes and nuclear shape. Beside, the Golgi, cap and acrosomal steps were subdivided into three phases of early, middle and late phase respectively, the maturation step was divided into two phases of early and late phase, and spermiation step has only one phase. Thus, the spermiognesis of T. sibiricus was divided into a total of twelve phases. In Golgi phase (steps 1-3), a well developed Golgi complex was located close to the vesicles, the acrosomal vesicle fixd to a recess of nuclear membrane at step 3. During cap phase (steps 4-6), the acrosomal vesicle spred over the nuclear surface to cover a third of the nucleus, and the acrosomal granule was not yet flattened. At acrosomal phase (steps 7-9), the nucleus and acrosome were elongated but nucleoplasm was not condensed. During maturation phase (steps 10-11), the nucleoplasm was more condensed, and the mitochondria completely arranged the center of axoneme. The spatulate-sperm head was completely formed at spermiation phase (step 12).