• 제목/요약/키워드: Axonal injury

검색결과 84건 처리시간 0.023초

Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model

  • Yoon, Hyung Ho;Lee, Hyang Ju;Min, Joongkee;Kim, Jeong Hoon;Park, Jin Hoon;Kim, Ji Hyun;Kim, Seong Who;Lee, Heuiran;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권5호
    • /
    • pp.705-715
    • /
    • 2021
  • Objective : Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3-asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods : Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results : Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion : Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.

The role of botulinum toxin type A related axon transport in neuropathic pain induced by chronic constriction injury

  • Bu, Huilian;Jiao, Pengfei;Fan, Xiaochong;Gao, Yan;Zhang, Lirong;Guo, Haiming
    • The Korean Journal of Pain
    • /
    • 제35권4호
    • /
    • pp.391-402
    • /
    • 2022
  • Background: The mechanism of peripheral axon transport in neuropathic pain is still unclear. Chemokine ligand 13 (CXCL13) and its receptor (C-X-C chemokine receptor type 5, CXCR5) as well as GABA transporter 1 (GAT-1) play an important role in the development of pain. The aim of this study was to explore the axonal transport of CXCL13/CXCR5 and GAT-1 with the aid of the analgesic effect of botulinum toxin type A (BTX-A) in rats. Methods: Chronic constriction injury (CCI) rat models were established. BTX-A was administered to rats through subcutaneous injection in the hind paw. The pain behaviors in CCI rats were measured by paw withdrawal threshold and paw withdrawal latencies. The levels of CXCL13/CXCR5 and GAT-1 were measured by western blots. Results: The subcutaneous injection of BTX-A relieved the mechanical allodynia and heat hyperalgesia induced by CCI surgery and reversed the overexpression of CXCL13/CXCR5 and GAT-1 in the spinal cord, dorsal root ganglia (DRG), sciatic nerve, and plantar skin in CCI rats. After 10 mmol/L colchicine blocked the axon transport of sciatic nerve, the inhibitory effect of BTX-A disappeared, and the levels of CXCL13/CXCR5 and GAT-1 in the spinal cord and DRG were reduced in CCI rats. Conclusions: BTX-A regulated the levels of CXCL13/CXCR5 and GAT-1 in the spine and DRG through axonal transport. Chemokines (such as CXCL13) may be transported from the injury site to the spine or DRG through axonal transport. Axon molecular transport may be a target to enhance pain management in neuropathic pain.

미만성 축삭 손상에서 전산화단층촬영과 경사에코 자기공명영상을 이용한 예후의 평가 (Prognostic Value of Computed Tomography and Gradient-echo Magnetic Resonance Imaging in Diffuse Axonal Injury)

  • 정남기;진상찬;최우익
    • Journal of Trauma and Injury
    • /
    • 제25권4호
    • /
    • pp.122-131
    • /
    • 2012
  • Purpose: Diffuse axonal injury (DAI) is clinically defined as a coma of over six hours in a head trauma victim without a focal mass lesion. The emergency physician usually resuscitates and stabilizes a comatose head trauma victim in the emergency Department. After assessment and treatment, the prognosis is very important to both the victim and the physician. The prognosis for DAI is based on Glasgow Coma Scale (GCS) and other imaging data. We investigated the prognostic value of computed tomography (CT) and gradient-echo magnetic resonance imaging (GRI) for head trauma victims with DAI. Methods: Fifty-three(53) head trauma victims of DAI were enrolled in this study from 2007 to 2012. During the study period of six years, data on trauma victims were collected retrospectively. We analyzed the differences in the Glasgow Outcome Scale (GOS) result between the CT and the GRI modalities. Results: We classified the study group by using GOS. Between the good outcome subgroup (GOS scores of 4 and 5) and the poor outcome subgroup (GOS score of 1-3), there were no statistical difference in sex, age, initial vital signs and initial GCS score. The good outcome subgroup had non-hemorrhage on CT(52%), which was correlated with good outcome and a shorter awakening time, while a larger number and a deeper location of hemorrhagic lesions on in GRI were correlated with poor outcome in DAI. Conclusion: We conclude that the existence of hemorrhagic lesions on CT, and the number and location of those lesions on GRI had good prognostic value for head trauma victims with DAI.

정중신경 손상에서 초음파 유도 하 신경주위 포도당 용액 주사치료의 효과 (Effect of Ultrasound-Guided Perineural Injection with Dextrose for Direct Traumatic Injury of Median Nerve)

  • 정유상;박혜린;박중현;박희재;조한얼
    • Clinical Pain
    • /
    • 제20권2호
    • /
    • pp.127-130
    • /
    • 2021
  • Ultrasound (US)-guided hydrodissection (HD) is a widely applied therapeutic method to release the entrapped peripheral nerve. However, this therapy has only been studied for the nerve entrapments such as carpal tunnel syndrome, and there are no reports of its effect on direct nerve injuries with incomplete axonal damage. Here, we report a case of direct traumatic injury of a median nerve with incomplete axonal injury in a 28-year-old man. He presented hypoesthesia and weakness along with the median nerve territory of the left hand after a laceration wound of the wrist. The patient underwent a surgical procedure, but did not experience prominent improvement for the next six months. Symptoms improved after we performed the US-guided HD with dextrose. We propose this procedure as one of the new treatment methods for direct axonal injury of nerves including the median nerve.

흰쥐의 좌골신경축삭 압좌 손상 후 시호(柴胡) 추출물에 의한 재생반응성 개선효과 (Effects of Bupleuri radix Extract on Axon Regrowth in the Injured Sciatic Nerve of Rats)

  • 강준혁;오민석
    • 대한한의학회지
    • /
    • 제31권1호
    • /
    • pp.93-111
    • /
    • 2010
  • Objectives: The present study was performed to evaluate the potential effects of Bupleuri radix (SH) on regenerative activities in the peripheral sciatic nerve after crushing injury in rats. Methods: Axonal regeneration after crush injury in rats was analyzed by immunofluorescence staining using anti-NF-200 antibody and retrograde tracing of DiI-axons. Changes in protein levels in the sciatic nerve axons and DRG tissue were analyzed by Western blot analysis and immunofluorescence staining. Effects of SH extract treatment on neurite outgrowth was examined by immunofluorescence staining for cultured DRG neurons. Results: Major findings on the effects of SH extract treatment on axonal regeneration are summarized as follows. 1. SH-mediated enhancement in axonal regeneration was identified by immuno- fluorescence straining of NF-200 protein and retrograde tracing of DiI-labeled axons. 2. Axonal GAP-43 protein levels were upregulated by SH not only in the injured axons but also in the DRG sensory neurons corresponding to sciatic sensory axons. 3. Phospho-Erk1/2 protein levels were increased in both injured axonal area and DRG sensory neurons by SH. Phospho-Erk1/2 was also found in non-neuronal cells in the injured axons. 4. SH elevated levels of Cdc2 protein produced in Schwann cells in the distal portions of injured sciatic nerves. 5. The neurite outgrowth of DRG sensory neurons in culture was augmented by SH, and these changes were positively associated with GAP-43 production levels in the DRG neurons. Conclusions: These data suggest that SH extract improves the regenerative responses of injured peripheral neurons, and thus may be useful for understanding molecular basis for the development of therapeutic strategies.

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • 동의생리병리학회지
    • /
    • 제20권5호
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

교통사고 후 발생한 드문 원인에 의한 인지 장애 1예 (Unusual Cause of Cognitive Impairment after a Traffic Accident)

  • 박치민
    • Journal of Trauma and Injury
    • /
    • 제24권2호
    • /
    • pp.151-154
    • /
    • 2011
  • In trauma patients, cognitive impairment may develop due to several causes: traumatic brain injury such as intracranial hemorrhage, diffuse axonal injury, hypoxic brain injury or reperfusion injury, the psychologic disorder, such as acute stress disorder, post-traumatic disorder or delirium. We describe a 62-year-old male with post-trauma cognitive impairment due to a primary central nervous system lymphoma.

우슬 추출물이 흰쥐 좌골신경 손상 후 좌골신경의 기능회복에 미치는 영향 (Effects of Aqueous Extract of Achyranthes Japonica on Functional Recovery in Sciatic Nerve after Crushed Sciatic Nerve Injury in Rats)

  • 이마성;송윤경;임형호
    • 한방재활의학과학회지
    • /
    • 제21권2호
    • /
    • pp.143-158
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problem and often result in severe functional deficits. The aim of this study is to evaluate the effects of aqueous extract of Achyranthes japonica(AJ) on functional recovery in sciatic nerve after crushed sciatic nerve injury. Methods : In the present study, the animals in the AJ-treated groups received the aqueous extract of AJ at the respective doses orally for 13 consecutive days. In order to assess the effects of the aqueous extract of AJ on function recovery in crushed sciatic nerve injury, sciatic functional index(SFI) was performed. c-Fos expression in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG), and neurofilament, and the expressions of brain-derived neurotrophic factor(BDNF), nerve growth factor(NGF) following crushed sciatic nerve injury in rats were investigated. For this, immunohistochemistry and western blot were performed. Results : In the present study, crushed sciatic nerve injury showed characteristic gait changes showing decrease of SFI value and treatment with the aqueous extract of AJ significantly enhanced the SFI value. Neurofilament expression in the sciatic nerve was decreased by crushed sciatic nerve injury and treatment with the AJ increased neurofilament expression. The expressions of BDNF and NGF in the sciatic nerve were increased following crushed sciatic nerve injury and treatment with the AJ significantly controlled the sciatic nerve injury-induced increment of BDNF and NGF expressions. c-Fos expressions in the PVN and vIPAG were increased following crushed sciatic nerve injury and treatment with the AJ significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions. Conclusions : These results suggest that AJ treatment after crushed sciatic nerve injury is effective in the functional recovery by enhancing axonal regeneration and suppressing of pain.

Improved Regenerative Responses of Injured Spinal Cord Nerve Fibers by the Treatment of Sukjihwang(Rehmanniae radix preparat)

  • Han, Kyu-Sul;Seol, In-Chan;Ryu, Ho-Ryong;Jo, Hyun-Kyung;An, Jung-Jo;NamGung, Uk;Kim, Yoon-Sik
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1569-1575
    • /
    • 2007
  • In oriental medicine, Sukjihwang (SJH, Rehmanniae radix preparat) has been used as one of the key ingredients for the prescription of several herbal decoctions and applied clinically for the treatment of several diseases including nervous system and cardiovascular disease. Here, possible growth-promoting effects of SJH on injured spinal cord axons were investigated in the rats. SJH administration increased levels of active form of ERK1/2 protein and Cdc2 proteins in the injured spinal cord tissue. Anterograde DiI-tracing of corticospinal tract axons showed that SJH-treatment enhanced axonal arborization in the injury area and extensive axonal extension into the caudal area. In SJH-treated group, glial scar formed after spinal cord injury was confined in a smaller area compared to the control group, and the trabecula structure was well observed within the injury cavity. Furthermore, increased proliferation and migration of astrocytes in the injury cavity were observed by SJH treatment. Thus, these present data provide a biological evidence on potential importance of SJH therapy for the treatment of injured spinal cord.

중추신경계 신경성장 억제 신호 (Neurite Growth Inhibitory Signals in CNS)

  • 김식현;권혁철
    • The Journal of Korean Physical Therapy
    • /
    • 제11권3호
    • /
    • pp.133-140
    • /
    • 1999
  • Why does the CNS not regenerate after injury? The failure of axonal regeneration in the CNS after injury is not due to an inherent inability of these neurons to regrowth axon. Recently, an inhibitory substrate effect of CNS has been discovered which could be directly invoked in the lack of regeneration. The failure of axon regrowth in the CNS is crucially influenced by the presence of neurtie growth inhibitor NI35/250 and possibly also by molecules such as myelin associated glycoprotein(MAG) and chondroitin sulphate proteoglycans(CSPGs). The application of the monoclonal antibody IN-1, which efficinetly neutralizes the N135/250 inhibitory molecules. This new finding has a strong impact on the development of, a new neuroscienctific research directed to stimulate axonal regeneration. In this review summarize the current knowledge on the factors and molecules involved in the regeneration failure.

  • PDF