• Title/Summary/Keyword: Axon

Search Result 180, Processing Time 0.028 seconds

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae;Kim, Dong Hee;An, Ji Young;Kang, Dasol;Park, Jeong Woo;Hwang, Eun Mi;Seo, Eun Jin;Jang, Il Ho;Ha, Chang Man;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.581-589
    • /
    • 2020
  • Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.

Depletion of Inositol Polyphosphate 4-Phosphatase II Suppresses Callosal Axon Formation in the Developing Mice

  • Ji, Liting;Kim, Nam-Ho;Huh, Sung-Oh;Rhee, Hae Jin
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.501-507
    • /
    • 2016
  • The corpus callosum is a bundle of nerve fibers that connects the two cerebral hemispheres and is essential for coordinated transmission of information between them. Disruption of early stages of callosal development can cause agenesis of the corpus callosum (AgCC), including both complete and partial callosal absence, causing mild to severe cognitive impairment. Despite extensive studies, the etiology of AgCC remains to be clarified due to the complicated mechanism involved in generating AgCC. The biological function of PI3K signaling including phosphatidylinositol-3,4,5-trisphosphate is well established in diverse biochemical processes including axon and dendrite morphogenesis, but the function of the closely related phosphatidylinositol-3,4,-bisphosphate (PI(3,4)P2) signaling, particularly in the nervous system, is largely unknown. Here, we provide the first report on the role of inositol polyphosphate 4-phosphatase II (INPP4B), a PI(3,4)P2 metabolizing 4-phosphatase in the regulation of callosal axon formation. Depleting INPP4B by in utero electroporation suppressed medially directed callosal axon formation. Moreover, depletion of INPP4B significantly attenuated formation of Satb2-positive pyramidal neurons and axon polarization in cortical neurons during cortical development. Taken together, these data suggest that INPP4B plays a role in the regulating callosal axon formation by controlling axon polarization and the Satb2-positive pyramidal neuron population. Dysregulation of INPP4B during cortical development may be implicated in the generation of partial AgCC.

Epigenetic Regulation of Axon Regeneration after Neural Injury

  • Shin, Jung Eun;Cho, Yongcheol
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2017
  • When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery.

Molecular Mechanisms Underlying Motor Axon Guidance in Drosophila

  • Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.549-556
    • /
    • 2021
  • Decoding the molecular mechanisms underlying axon guidance is key to precise understanding of how complex neural circuits form during neural development. Although substantial progress has been made over the last three decades in identifying numerous axon guidance molecules and their functional roles, little is known about how these guidance molecules collaborate to steer growth cones to their correct targets. Recent studies in Drosophila point to the importance of the combinatorial action of guidance molecules, and further show that selective fasciculation and defasciculation at specific choice points serve as a fundamental strategy for motor axon guidance. Here, I discuss how attractive and repulsive guidance cues cooperate to ensure the recognition of specific choice points that are inextricably linked to selective fasciculation and defasciculation, and correct pathfinding decision-making.

Local protein synthesis in neuronal axons: why and how we study

  • Kim, Eunjin;Jung, Hosung
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.139-146
    • /
    • 2015
  • Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expression solely by translational control. Different stimuli to axons, such as guidance cues, growth factors, and nerve injury, promote translation of selective mRNAs, a process required for the axon's ability to respond to these cues. One of the critical questions in the field of axonal protein synthesis is how mRNA-specific local translation is regulated by extracellular cues. Here, we review current experimental techniques that can be used to answer this question. Furthermore, we discuss how new technologies can help us understand what biological processes are regulated by axonal protein synthesis in vivo.

The $GABA_c$ Receptor Is Present in Isolated Cone-Horizontal Cell Axon Terminals From Catfish Retina

  • Jung, Chang-Sub;Lee, Sung-Jong;Paik, Sun-Sook;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.35-35
    • /
    • 1998
  • Catfish retina contains cone- and rod-horizontal cells. Only the cone-horizontal cell (cone-HC) has an axon and axon terminal. We compared the distribution of excitatory and inhibitory receptors in axon terminals and somata to begin to learn about the distinct functions of these two structures.(omitted)

  • PDF

Finite-difference Time-domain Study on Birefringence Changes of the Axon During Neural Activation

  • Lee, Jong-Hwan;Kim, Sung-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.272-278
    • /
    • 2009
  • Recently, there has been a growing interest in optical imaging of neural activity because the optical neuroimaging has considerable advantages over conventional imaging. Birefringence of the axon has been reported to change during neural activation, but the neurophysiological origin of the change is still unresolved. This study hypothesizes that the birefringence signal is at least partially attributed to the transient cellular volume change associated with nerve excitation. To examine this hypothesis, we investigated how the intensity of cross-polarized light transmitting through the axon would change as the size of the axon changes. For this purpose, a two-dimensional finite-difference time-domain program was developed with the improvement of the total-field/scattered-field method which reduces numerical noise. The results support our hypothesis in that the computed cross-polarized signals exhibit some agreement with previously-reported birefringence signals.

Quantitative Evaluation of the Mode of Microtubule Transport in Xenopus Neurons

  • Kim, Taeyong;Chang, Sunghoe
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Tubulin is synthesized in the cell body and must be delivered to the axon to support axonal growth. However, the exact form in which these proteins, in particular tubulin, move within the axon remains contentious. According to the "polymer transport model", tubulin is transported in the form of microtubules. In an alternative hypothesis, the "short oligomer transport model", tubulin is added to existing, stationary microtubules along the axon. In this study, we measured the translocation of microtubule plus ends in soma segments, the middle of axonal shafts and the growth cone areas, by expressing GFP-EB3 in cultured Xenopus embryonic spinal neurons. We found that none of the microtubules in the three compartments were transported rapidly as would be expected from the polymer transport model. These results suggest that microtubules are stationary in most segments of the axon, thus supporting the model according to which tubulin is transported in nonpolymeric form in rapidly growing Xenopus neurons.

Identification of cis-Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System

  • Hong, Young Gi;Kang, Bongsu;Lee, Seongsoo;Lee, Youngseok;Ju, Bong-Gun;Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.228-235
    • /
    • 2020
  • The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema-1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.

Impulse Trafficking in Neurons of the Mesencephalic Trigeminal Nucleus

  • Saito, Mitsuru;Kang, Young-Nam
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.113-118
    • /
    • 2006
  • In the primary sensory neuron of the mesencephalic trigeminal nucleus (MTN), the peripheral axon supplies a large number of annulospiral endings surrounding intrafusal fibers encapsulated in single muscle spindles while the central axon sends only a few number of synapses onto single ${\alpha}-motoneurons({\alpha}-MNs)$. Therefore, the ${\alpha}-{\gamma}$ linkage is thought to be very crucial in the jaw-closing movement. Spike activity in a ${\gamma}-motoneuron\;({\gamma}-MN)$ would induce a large number of impulses in single peripheral axons by activating many intrafusal fibers simultaneously, subsequently causing an activation of ${\alpha}-MNs$ in spite of the small number of synapses. Thus, the activity of ${\gamma}-MNs$ may be vital for modulation of jaw-closing movements. Independently of such a spindle activity modulated by ${\gamma}-MNs$, somatic depolarization in MTN neurons is known to trigger the oscillatory spike activity. Nevertheless, the trafficking of these spikes arising from the two distinct sources of MTN neurons is not well understood. In this short review, switching among multiple functional modes of MTN neurons is discussed. Subsequently, it will be discussed which mode can support the ${\alpha}-{\gamma}$ linkage. In our most recent study, simultaneous patch-clamp recordings from the soma and axon hillock revealed a spike-back-propagation from the spike-initiation site in the stem axon to the soma in response to a somatic current pulse. The persistent $Na^+$ current was found to be responsible for the spike-initiation in the stem axon, the activation threshold of which was lower than those of soma spikes. Somatic inputs or impulses arising from the sensory ending, whichever trigger spikes in the stem axon first, would be forwarded through the central axon to the target synapse. We also demonstrated that at hyperpolarized membrane potentials, 4-AP-sensitive $K^+$ current ($IK_{4-AP}$) exerts two opposing effects on spikes depending on their origins; the suppression of spike initiation by increasing the apparent electrotonic distance between the soma and the spike-initiation site, and the facilitation of axonal spike invasion at higher frequencies by decreasing the spike duration and the refractory period. Through this mechanism, the spindle activity caused by ${\gamma}-MNs$ would be safely forwarded to ${\alpha}-MNs$. Thus, soma spikes shaped differentially by this $IK_{4-AP}$ depending on their origins would reflect which one of the two inputs was forwarded to the target synapses.