Browse > Article

Quantitative Evaluation of the Mode of Microtubule Transport in Xenopus Neurons  

Kim, Taeyong (Department of Life Science, Gwangju Institute of Science and Technology)
Chang, Sunghoe (Department of Life Science, Gwangju Institute of Science and Technology)
Abstract
Tubulin is synthesized in the cell body and must be delivered to the axon to support axonal growth. However, the exact form in which these proteins, in particular tubulin, move within the axon remains contentious. According to the "polymer transport model", tubulin is transported in the form of microtubules. In an alternative hypothesis, the "short oligomer transport model", tubulin is added to existing, stationary microtubules along the axon. In this study, we measured the translocation of microtubule plus ends in soma segments, the middle of axonal shafts and the growth cone areas, by expressing GFP-EB3 in cultured Xenopus embryonic spinal neurons. We found that none of the microtubules in the three compartments were transported rapidly as would be expected from the polymer transport model. These results suggest that microtubules are stationary in most segments of the axon, thus supporting the model according to which tubulin is transported in nonpolymeric form in rapidly growing Xenopus neurons.
Keywords
EB3; Microtubule; Short Oligomer Transport Model; Xenopus Spinal Neuron;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ma, Y., Shakiryanova, D., Vardya, I., and Popov, S. V. (2004) Quantitative analysis of microtubule transport in growing nerve processes. Curr. Biol. 14, 725−730   DOI   ScienceOn
2 Schatzthauer, R. and Fromherz, P. (1998) Neuron-silicon junction with voltage-gated ionic currents. Eur. J. Neurosci. 10, 1956−1962   DOI   ScienceOn
3 Terada, S. (2003) Where does slow axonal transport go? Neurosci. Res. 47, 367−372   DOI   ScienceOn
4 Wang, L. and Brown, A. (2001) Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol. Biol. Cell. 12, 3257−3267
5 Zakharenko, S. and Popov, S. (1998) Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077−1086   DOI   ScienceOn
6 Baas, P. W. and Brown, A. (1997) Slow axonal transport: the polymer transport model. Trends Cell Biol. 7, 380−384   DOI   ScienceOn
7 Chang, S., Svitkina, T. M., Borisy, G. G., and Popov, S. V. (1999) Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nat. Cell Biol. 1, 399−403   DOI   ScienceOn
8 DeGeorge, J. J., Slepecky, N., and Carbonetto, S. (1985) Concanavalin A stimulates neuron-substratum adhesion and nerve fiber outgrowth in culture. Dev. Biol. 111, 335−351   DOI   ScienceOn
9 de-Miguel, F. E. and Vargas, J. (1997) Different determinants on growth and synapse formation in cultured neurons. Neuroreport 8, 761−765   DOI   ScienceOn
10 Galbraith, J. and Gallant, P. (2000) Axonal transport of tubulin and actin. J. Neurocytol. 29, 889−911   DOI   ScienceOn
11 Hasaka, T. P., Myers, K. A., and Baas, P. W. (2004) Role of actin filaments in the axonal transport of microtubules. J. Neurosci. 24, 11291−11301   DOI   ScienceOn
12 Lasek, R. J., Garner, J. A., and Brady, S. T. (1984) Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s− 221s   DOI   ScienceOn
13 Yan, Y. and Brown, A. (2005) Neurofilament polymer transport in axons. J. Neurosci. 25, 7014−7021   DOI   ScienceOn
14 Hirokawa, N. (1997) The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors. Curr. Opin. Neurobiol. 7, 605− 614   DOI   ScienceOn
15 Terada, S. and Hirokawa, N. (2000) Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr. Opin. Neurobiol. 10, 566−573   DOI   ScienceOn
16 Wang, L. and Brown, A. (2002) Rapid movement of microtubules in axons. Curr. Biol. 12, 1496−1501   DOI   ScienceOn
17 Hoffman, P. N. and Lasek, R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66, 351−366   DOI   ScienceOn
18 Tytell, M., Black, M. M., Garner, J. A., and Lasek, R. J. (1981) Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science 214, 179−181   DOI
19 Stepanova, T., Slemmer, J., Hoogenraad, C. C., Lansbergen, G., Dortland, B., et al. (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (endbinding protein 3-green fluorescent protein). J. Neurosci. 23, 2655−2664
20 Wang, L., Ho, C. L., Sun, D., Liem, R. K., and Brown, A. (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2, 137−141   DOI   ScienceOn
21 Kim, J. H., Hong, Y. H., Lee, J. H., Kim, D. H., Nam, G., et al. (2005) A role for the carbohydrate portion of ginsenoside $Rg_{3}$ in $Na^{+}$ channel inhibition. Mol. Cells 19, 137−142
22 Grafstein, B. and Forman, D. S. (1980) Intracellular transport in neurons. Physiol. Rev. 60, 1167−1283
23 Peloquin, J., Komarova, Y., and Borisy, G. (2005) Conjugation of fluorophores to tubulin. Nat. Methods 2, 299−303   DOI   ScienceOn
24 Stewart, R., Allan, D. W., and McCaig, C. D. (1996) Lectins implicate specific carbohydrate domains in electric field stimulated nerve growth and guidance. J. Neurobiol. 30, 425−437   DOI   ScienceOn
25 Chang, S., Rodionov, V. I., Borisy, G. G., and Popov, S. V. (1998) Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. J. Neurosci. 18, 821−829
26 Bamburg, J. R., Bray, D., and Chapman, K. (1986) Assembly of microtubules at the tip of growing axons. Nature 321, 788− 790   DOI   ScienceOn
27 Piper, M. and Holt, C. (2004) RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505−523   DOI   ScienceOn