• Title/Summary/Keyword: Axisymmetric Extrusion

Search Result 52, Processing Time 0.028 seconds

A UBET Analysis of Non-axisymmetric Forward and Backward Extrusion (비축대칭 전후방압출공정의 UBET해석)

  • Lee, Hee-In;Kim, Jin-Kyu;Hwang, Bum-Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.154-161
    • /
    • 2001
  • A UBET analysis has been carried out to predict the forming load and the extruded length of forward and backward extrusion of hexagonal and trochoidal wrench colts. For the upper bound load and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities and parameters at each element. Experiments are carried out with antimony-lead billets at room temperature using hexagonal and trochoidal shaped punches. The theoretical predictions of the forming load and the extruded length are in good agreement with the experimetal results.

  • PDF

Analysis of axisymmetric extrusion through curved dies by using the method of weighted residuals (가중잔류항법을 이용한 곡면금형의 축대칭 전방압출해석)

  • 조종래;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.509-518
    • /
    • 1987
  • The paper is concerned with the analysis of axisymmetric forward extrusion by using the method of weighted residuals. In the method of weighted residuals, the flow function and the stress functions are assumed so as to cover the global control volume. The derived stress and strain components are used to formulate a constitutive equation in the error form, so that the error is minimized to determine the stress and strain components. The method of least squares is then chosen for the minimization of errors. The distribution of stresses and strains and the forming load are determined for the workhardening material considering the frictional effect at the die surface. The computed results are very similar to those obtained by the finite element method. The method is simpler in application and requires less computational time than the finite element method. Experiments are carried out for aluminum and steel specimens using curved dies. It is found that the experimental observation is mostly in agreement with the computed results by the method of weighted residuals.

Process Sequence Design in Cold Forging of Constant Velocity Joint Housing (등속조인트 하우징의 냉간단조 공정설계)

  • 이진희;강범수;김병민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

Experimental Investigation on the Flow Control in Non-Axisymmetric Flat Die Extrusion-1 (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-I)

  • Bae, W.B.;Kim, Y.H.;Park, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.136-141
    • /
    • 1996
  • In this paper, the design variables of the extruded parts involving flat die through model experiment are investigated to overcome some current problems such as bending and twisting and get more improved quality products. Above all, the deformation behavior is analyzed in experiment and investigated flow charactristics inside container. Finally, the straight extruded product is obtained by modified bearing land width on the basis of the exit velocities distribution from bended and twisted products.

  • PDF

Process of explosive compaction of internally oxidized powders; Cu-0.15%BeO

  • Moon, J.G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.447-451
    • /
    • 2002
  • The explosive compaction for processing of electrode material was realized based on axisymmetric loading scheme. The compression of internally oxidized fraction of the alloy Cu-0.15%BeO alloy did not provide a considerable strengthening effect; average microhardness varied from 130 to l50Mpa. The tensile strength comes to 30Mpa. However this method can be applicable to obtain a dense briquette for further extrusion of electrode.

  • PDF

Development of Expert System for Cold Forging of Axisymmetric Product - Horizontal Split and Optimal Design of Multi-former Die Set - (준축대칭 제품 냉간단조용 전문가시스템 개발 - 다단포머 금형의 수평분할 밀 최적설계 -)

  • Park, Chul-Woo;Cho, Chun-Soo;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.32-40
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and the die design modules consider several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

Prevention of Internal Defects of Cold Extruded Planetary Gears (냉간 압출된 유성기어의 내부결함 방지)

  • Lee, J.-H.;Choi, J.;Lee, Y.-S.;Choi, S.-H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

Optimal design of multi-former die set by the techniques of horizontal split

  • Kim Chul;Park Chul-Woo;Chang Young-June
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module optimal design technique and horizontal split of die insert were investigated for determining appropriate dimensions of components of multi-former die set. Results obtained, using the modules, enable the design and manufacture of a die set for a multi-former to be more efficiently performed.

Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force (스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

A Study on the optimal Process Planning and Die design for manufacturing Bolts by multi-former (다단-포머용 볼트류 제작을 위한 최적의 공정 및 금형설계에 관한 연구)

  • 박철우;김철;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1307-1311
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

  • PDF