• 제목/요약/키워드: Axisymmetric Cylindrical Shell

검색결과 25건 처리시간 0.021초

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

내압을 받는 벨로즈의 변형 거동에 관한 연구 (A Study on the Deformation Behaviour of Bellows Subjected to Internal Pressure)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.702-710
    • /
    • 1999
  • U-shaped bellows are usually used to piping system pressure sensor and controller for refriger-ator. Bellows subjected to internal pressure are designed for the purpose of absorbing deformation. Internal pressure on the convolution sidewall and end collar will be applied to an axial load tend-ing to push the collar away from the convolutions. To find out deformation behavior of bellow sub-jected to internal pressure the axisymmetric shell theory using the finite element method is adopted in this paper. U-shaped bellows can be idealized by series of conical frustum-shaped ele-ments because it is axisymmetric shell structure. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displace-ments are added to r-z cylindrical coordinates of nodal points. The new stiffness matrix of the sys-tem using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacement that is the step by step method is used in this paper. The force required to deflect bellows axially is a function of the dimensions of the bellows and the materials from which they are made. Spring constant is analyzed according to the changing geometric factors of U-shaped bellows. The FEM results were agreed with experiment. Using developed FORTRAN PROGRAM the internal pressure vs. deflection characteristics of a particu-lar bellows can be predicted by input of a few factors.

  • PDF

Buckling of axial compressed cylindrical shells with stepwise variable thickness

  • Fan, H.G.;Chen, Z.P.;Feng, W.Z.;Zhou, F.;Shen, X.L.;Cao, G.W.
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.87-103
    • /
    • 2015
  • This paper focuses on an analytical research on the critical buckling load of cylindrical shells with stepwise variable wall thickness under axial compression. An arctan function is established to describe the thickness variation along the axial direction of this kind of cylindrical shells accurately. By using the methods of separation of variables, small parameter perturbation and Fourier series expansion, analytical formulas of the critical buckling load of cylindrical shells with arbitrary axisymmetric thickness variation under axial compression are derived. The analysis is based on the thin shell theory. Analytic results show that the critical buckling load of the uniform shell with constant thickness obtained from this paper is identical with the classical solution. Two important cases of thickness variation pattern are also investigated with these analytical formulas and the results coincide well with those obtained from other authors. The cylindrical shells with stepwise variable wall thickness, which are widely used in actual engineering, are studied by this method and the analytical formulas of critical buckling load under axial compression are obtained. Furthermore, an example is presented to illustrate the effects of each strake's length and thickness on the critical buckling load.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

A Study for the Measurement of a fluid Density in a ripe Using Elastic Waves

  • Kim, Jin-Oh;Hwang, Kyo-Kwang;Bau, Haim-H.
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.583-593
    • /
    • 2003
  • The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves for the determination of the density and, eventually, the flow rate of the liquid in a pipe.

회전(回轉) SHELL의 좌굴(挫屈) 해석(解析) (The Buckling Analysis of Shells of Revolution)

  • 임상전;장창두;윤장호
    • 대한조선학회지
    • /
    • 제21권2호
    • /
    • pp.19-27
    • /
    • 1984
  • An extension of the finite element method to the stability analysis of shells of revolution under static axisymmetric loading is presented in this paper. A systematic procedure for the formulation of the problem is based upon the principle of virtual work. This procedure results in an eigenvalue problem. For solution, the shell of revolution is discretized into a series of conical frusta. The buckling mode in the circumferential direction is assumed, this assumption makes the problem economical for the computing time. The present method is applied to a number of shells of revolution, under axial compression or lateral pressure, and comparision are made with other theoretical results. The results show good agreement each other. The effects of aspect ratio, boundary conditions and buckling modes on the buckling strength of shells of revolution are studied. Also the optimum shape of cylindrical shell under uniform axial compression is obtained from the view point of structural stability.

  • PDF

인도행렬에 의한 축대칭 원통형 쉘의 해석 (An Analysis of Axisymmetric Cylindrical Shell by the Leading Matrix Method)

  • 이관희;박준용;김우중
    • 한국전산구조공학회논문집
    • /
    • 제17권2호
    • /
    • pp.193-201
    • /
    • 2004
  • 본 연구의 목적은 축대칭 하중을 받는 원통형 펄의 엄밀해를 구하는데 있어서, 간략하면서도 엄밀한 해를 구하는 방법을 제시하고자 하는데 있다. 이는 임의 형상의 구조해석을 위한 강력한 도구이긴 하지만 여전히 근사해석인 유한요소법에 대체될 수 있을 것이다. 이를 위해 본 논문은 반복법의 일종인 인도행렬법을 이용한 절점역계의 분배방식을 사용하였다. 원통형 쉘의 분배와 전달인자는 한성지반상의 보에 대한 미분방정식으로부터 구해진 것이다. 이러한 방법을 축대칭 집중하중과 정수압을 받는 원통형 쉘에 각각 적용해 보았고, 그 결과는 BEF 이론해와 비교할 때 만족할 만 하였다.