• Title/Summary/Keyword: Axisymmetric Cylindrical Enclosure

Search Result 6, Processing Time 0.017 seconds

Radiation in axisymmetric cylindrical coordinates with the modified discrete-ordinates method (축대칭 원통좌표계에서 수정된 구분종좌법에 의한 복사열전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.213-220
    • /
    • 1998
  • The conventional discrete-ordinates method (DOM) is modified and developed for the analysis of two-dimensional axisymmetric cylindrical enclosure with curved wall. The objective of the present work is to extend the capability of the conventional DOM into a general axisymmetric geometry like nozzle-shaped enclosure, by adopting the arbitrary control angle as was done in the finite-volume method (FVM), while keeping the same two-dimensional solution procedure as in the conventional DOM. The present method is validated by applying it to three different benchmark problems of axisymmetric enclosure containing absorbing, emitting and scattering medium. Results presented in this work not only support the solution accuracy, but also moderate efficiency in the numerical calculation of axisymmetric radiation problem.

Analysis of the Radiative Heat Transfer in a Cylindrical Enclosure with Obstacles Using the Discrete Ordinate and Finite Volume Method (구분종좌표법 및 유한체적법을 이용한 장애물이 있는 원통형 밀폐공간에서의 복사열전달 해석)

  • Kim, Seong-Woo;Kim, Il-Kyoung;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.347-352
    • /
    • 2000
  • In the present study, DOM and FVM have been used to analyze the radiative heat transfer in an axisymmetric cylindrical enclosure with obstacles. Heat flux distributions on the wall of enclosure form DOM and FVM are compared to those from simplified zone analysis for a nonparticipating medium. The comparison of DOM and FVM is also presented. Results show that there is a good agreement between FVM and simplified zone analysis. In addition, the effect of the thickness of the obstacle on the results is considered. Heat flux distribution on the surface of the obstacle is also presented.

  • PDF

A Study on the Inverse Analysis of Surface Radiation in a Cylindrical Enclosure (원통형상에서의 표면복사 역해석에 관한 연구)

  • KIm, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.705-712
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured or desired heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy. Furthermore, the effect of a variation in one boundary condition on the other boundary conditions was also investigated to get the same desired heat flux and temperature distribution on the design surface.

A Study on the Inverse Radiation Analysis in a Cylindrical Enclosure (원통형상에서의 역복사 해석에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1516-1521
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy.

  • PDF

Inverse Boundary Temperature Estimation in a Two-Dimensional Cylindrical Enclosure Using Automatic Differentiation and Broyden Combined Method (자동미분법과 Broyden 혼합법을 이용한 2차원 원통형상에서의 경계온도 역추정)

  • Kim Ki-Wan;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.270-277
    • /
    • 2006
  • Inverse radiation problems were solved for estimating boundary temperature distribution in a way of function estimation approach in an axisymmetric absorbing, emitting and scattering medium, given the measured radiative data. In order to reduce the computational time fur the calculation of sensitivity matrix, automatic differentiation and Broyden combined method were adopted, and their computational precision and efficiency were compared with the result obtained by finite difference approximation.. In inverse analysis, the effects of the precision of sensitivity matrix, the number of measurement points and measurement error on the estimation accuracy had been inspected using quasi-Newton method as an inverse method. Inverse solutions were validated with the result acquired by additional inverse methods of conjugate-gradient method or Levenberg-Marquardt method.

Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm (반발 입자 군집 최적화 알고리즘을 이용한 표면복사 물성치의 역추정에 관한 연구)

  • Lee, Kyun Ho;Kim, Ki Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.747-755
    • /
    • 2014
  • The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.