• Title/Summary/Keyword: Axiomatic Design Process

Search Result 63, Processing Time 0.026 seconds

Conceptual Design of a Beam Splitter for the Laser Marker Using Axiomatic Design and Triz (TRIZ를 도입한 공리적 설계방법에 의한 레이저 마커의 빔 분해기 개념설계)

  • 신광섭;박경진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.166-173
    • /
    • 2004
  • Axiomatic Design has been developed as a general design framework during past two decades and TRIZ has been developed for a design tool over 50 years. Axiomatic design is quite excellent in that the design should be decoupled. When a design matrix is established, the characteristics of the design are identified concerning the coupling properties. If the design is coupled, a decoupling process should be found. However, axiomatic design does not specifically indicate how to decouple. In this paper, a design method is developed to use TRIZ in the decoupling process. The decoupling ideas are extracted from the substance field analysis and various methods in TRIZ. The mettled is applied applied to the conceptual design of a beam splitter for the laser marker and the results are analyzed.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

A Structural Optimization Methodology Using the Independence Axiom (독립 공리를 이용한 구조 최적화 방법론 개발)

  • Lee, Gwang-Won;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2438-2450
    • /
    • 2000
  • The Design Axioms provide a general framework for design methodologies. The axiomatic design framework has been successfully applied to various design tasks. However, the axiomatic design has been rarely utilized in the detailed design process of structures where the optimization technology is generally carried out. The relationship between the axiomatic design and the optimization is investigated and Logical Decomposition method is developed for a systematic structural optimization. The entire optimization process is decomposed to satisfy the Independence Axiom. In the decomposition process, design variables are grouped according to sensitivities. The sensitivities are evaluated by the Analysis of Variance(ANOVA) to avoid considering only local values. The developed method is verified through examples such as the twenty -five members transmission tower and the two -bay-six-story frame.

An Enhanced Axiomatic Design Process Using Combinative Index (결합지수를 이용한 강화된 공리적 설계 프로세스)

  • 고희병;문용락;김주호;김영돈;이수홍;장민호;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.595-599
    • /
    • 2000
  • This paper describes an Axiomatic Design Process enhanced by the Combinative Index that represents combinative strength between function requirements and design parameters. This method combines the advantages of these two methods : 1) Combinative Index that represents combinative strength between function requirements and design parameters so that we clearly understand these information. 2) engineering specifications are categorized into strategies, constraints and Functional Requirements. In this paper, relationship of FR's and DP's is regarded as one in which uncertainty of information are fundamentally involved. In the reduction of problem with uncertainty, we propose an enhanced Axiomatic Design Process using Combinative Index.

  • PDF

EVOLUTIONARY DESIGN OF NO SPIN DIFFERENTIAL MODELS FOR OFF-ROAD VEHICLES USING THE AXIOMATIC APPROACH

  • Pyun, Y.S;Jang, Y.D.;Cho, I.H.;Park, J.H.;Combs, A.;Lee, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.795-801
    • /
    • 2006
  • A No Spin Differential (NSD) design has been improved from evaluation of two NSD models utilizing the axiomatic approach. New design parameters of the second level are developed to satisfy the independence axiom. The design matrices are determined to decouple the relationship between design parameters and process parameters. The values of process parameters are then determined to optimize and improve the NSD design. Consequently a unique and evolutionary NSD design is achieved with the aid of the axiomatic approach.

INTERACTIVE SYSTEM DESIGN USING THE COMPLEMENTARITY OF AXIOMATIC DESIGN AND FAULT TREE ANALYSIS

  • Heo, Gyun-Young;Lee, Tae-Sik;Do, Sung-Hee
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.51-62
    • /
    • 2007
  • To efficiently design safety-critical systems such as nuclear power plants, with the requirement of high reliability, methodologies allowing for rigorous interactions between the synthesis and analysis processes have been proposed. This paper attempts to develop a reliability-centered design framework through an interactive process between Axiomatic Design (AD) and Fault Tree Analysis (FTA). Integrating AD and FTA into a single framework appears to be a viable solution, as they compliment each other with their unique advantages. AD provides a systematic synthesis tool while FTA is commonly used as a safety analysis tool. These methodologies build a design process that is less subjective, and they enable designers to develop insights that lead to solutions with improved reliability. Due to the nature of the two methodologies, the information involved in each process is complementary: a success tree versus a fault tree. Thus, at each step a system using AD is synthesized, and its reliability is then quantified using the FT derived from the AD synthesis process. The converted FT provides an opportunity to examine the completeness of the outcome from the synthesis process. This study presents an example of the design of a Containment Heat Removal System (CHRS). A case study illustrates the process of designing the CHRS with an interactive design framework focusing on the conversion of the AD process to FTA.

Axiomatic Design of Mold System for Advance of Foaming Magnitude (발포 배율의 향상을 위한 금형 시스템의 공리적 설계)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.637-644
    • /
    • 2001
  • Polymer materials have a lot of merits including the low cost and the easiness of forming. For these reasons they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980s to save a quantity of material and increase mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. They can be solved by using Axiomatic Design Method which is very useful design method for designing a new product. Its main character is scientific and analytical. The information about the thickness of cavity plays an important role in making an effective foam. The goal of this research is to design mold system for advance of foaming magnitude with axiomatic design method. There is a relation between the change of cavitys thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. In this paper, an advanced mold system was presented by mapping the relation between functional requirements and design parameters.

A Development of Simulation Based CAD System for Automotive Rubber Machinery: An Axiomatic Design Approach (공리적 설계법을 이용한 차량용 고무설비 설계 지원 CAD 시스템 개발)

  • 구진모;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.84-89
    • /
    • 2003
  • Axiomatic Design Theory is one of the most useful design methodologies which uses Functional Requirements(FRs) and Design Parameters(DPs) to make human designers more creative, to reduce the random search process, to minimize the iterative trial-and-error process, and to determine the best design among those proposed. In this research, we show how to develop a CAD system for an automotive rubber machinery using the axiomatic design approach to illustrate the effectiveness of the theory and we suggest a better way to select FRs and DPs in axiomatic design approach which can help designers to select them more effectively, objectively, and easily.

Decoupling Process of a Coupled Design in Axiomatic Design Using the TRIZ (공리적 설계에서 트리즈를 이용한 연성설계의 비연성화 과정)

  • Shin, Gwang-Seob;Kim, Yong-Il;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.77-88
    • /
    • 2007
  • Axiomatic Design has been developed as a general design framework during past two decades and TRIZ has been developed for a design tool over 50 years. Axiomatic design is quite excellent in that design should be decoupled. When a design matrix is established, the characteristics of the design are identified according to the coupling properties. If the design is coupled, a decoupling process should be found. However, axiomatic design does not specifically indicate how to decouple a coupled design. In this research, the coupling manner is classified into six patterns. Each pattern could be solved by an appropriate TRIZ module. A table, which matches the coupling pattern and a TRIZ module, is proposed for effective application of the two design theories. The decoupling ideas are proposed by using TRIZ modules. When the number of decoupled designs is more than one, the engineer should select the final idea. The proposed method is applied to practical cases such as a tape feeder and a beam adjuster of the laser marker.