• 제목/요약/키워드: Axial-flow fan

검색결과 234건 처리시간 0.026초

2단 축류홴과 엇회전식 축류홴의 공력특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of a Two-Stage and a Counter-Rotating Axial Flow Fan)

  • 조진수;조이상
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1281-1292
    • /
    • 2001
  • Experiments were done for the comparison of performance and flow characteristics between a two -stage axial flow fan and a counter-rotating axial flow fan. Each stage of the two -stage axial flow fan used fur the present study has an eight bladed rotor and thirteen slater blades. The front and the rear rotor of the counter - rotating axial flow fan have eight blades each and are driven by coaxial counter ro latins shafts through a gearbox located between the rear rotor and the electric motor. Both of the two axial fan configurations have identical rotor blades and the same operating condition fur the one -to-one comparison of the two. Performance curves of the two configurations were obtained and compared by varying the blade pitch angles and axial gaps between the blade rows. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fa n flow characteristics were measured using a five-hole probe by a non-nulling method. The velocity profiles between the hub and tip of the fans were measured and analyzed at the particular operating condition s of peak efficiency, minimum and maximum pressure coefficients. The peak efficiency of the counter-rotating axial fan was improved about 2% respectively, compared with the two stage axial fan. At the minimum pressure coefficient point of the two stage axial fan, the fan inlet flow patterns show that axial velocity highly decreased in the vicinity of the blade tip region. Also, the reverse flow took place at the blade tip.

고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구 (A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans)

  • 조진수;한철희;조이상
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.

2단 축류팬과 엇회전식 축류팬의 공력 특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of a Two Stage and a Counter-Rotating Axial Flow Fan)

  • 조이상;조진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.541-547
    • /
    • 2000
  • Experiments were done for the comparison of performance and flow characteristics between a two stage axial flow fan and a counter-rotating axial flow fm. The fan performance curves were obtained by the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe by the non-nulling method. Each stage of the two stage axial flow fan used for the present study has an eight bladed rotor and thirteen stator blades. The front and the rear rotor of the counter-rotating axial flow fan have eight blades each and are driven by coaxial counter rotating shafts through a gear box located between the rear rotor and the electric motor. Both of the two axial fan configurations use identical rotor blades and the same operating conditions for the one-to-one comparison of the two. Performance characteristics of the two configurations were obtained and compared by varying the blade setting angles and axial gaps between the blade rows. The passage flow fields between the hub and tip of the fans were measured and analyzed for the particular operating conditions of peak efficiency, minimum and maximum pressure coefficients.

  • PDF

엇회전식 축류 펜의 공력 특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Flow Fan)

  • 최진용;조이상;조진수;원유필
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.201-210
    • /
    • 2002
  • Experiments were done for performance and flow characteristics of a counter-rotating axial flow fan. Performance curves of a counter-rotating axial flow fan were obtained and compared by varying the blade pitch angles. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe and a slanted hot-wire. The velocity profiles between the hub and tip of the fans were measured and analyzed at the peak efficiency point. The peak efficiency of the counter-rotating axial flow fan was improved about 15% respectively, compared with the single rotating axial fan. The single rotating axial flow fan showed relatively law efficiency due to the swirl velocities behind rotor exit which produced pressure losses. The counter-rotating axial flow fan showed that the swirl velocity generated by the front rotor was eliminated by the rear rotor and the associated dynamic pressure is recovered in the from of the static pressure rise.

축류형 이중 블레이드 팬의 공기 유동 특성에 관한 실험적 연구 (Experimental Study on Air Flow Characteristics of Axial Dual-blade Fan)

  • 김해지;이용민
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.113-120
    • /
    • 2014
  • To ventilate indoor spaces, axial single-blade fans are widely used in various areas, such as schools, houses, offices, and restaurants. Recently, axial single-blade fans were developed to realize energy efficiency and noise reduction improvements. Here, an experimental study of the air flow characteristics of an axial dual-blade fan is conducted. The characteristics of the axial dual-blade fan were tested via an air flow analysis and with prototypes. For the performance of the fan, the flow rate, power consumption, and noise were evaluated. The result showed that the axial dual-blade fan uses less power and produces less noise in comparison with an axial single-blade fan.

비소음 측정을 이용한 저소음 축류홴 설계 (Design of Low Noise Axial Flow Fan Using Specific Sound Presssure Level)

  • 김창준;이동익
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.873-879
    • /
    • 2000
  • Experimental investigation was conducted to study the effects of pitch angle maximum camber on the performance and noise of an axial-flow fan used in outdoor-unit of air -conditioner. For this study the axial-flow fan whose pitch angle can be varied was made and the Specific sound Pressure Level and other coefficients were measured using the anechoic fan tester. It is found that pitch angle affects more severly than the maximum camber on the fan performance. On the while the maximum camber affects much on the specific sound power level. Present results show that it is important to choose the optimum pitch angle and maximum camber to design the high-performance and low-noise axial-flow fan and specific noise measured in the anechoic fan tester can be sued effectively for the design of low-noise fan.

  • PDF

피치각 조정형 송풍-역풍 겸용 축류팬에서 배연용 피치각 선정을 위한 실험적 연구 (An Experimental Study on Selection Pitch Angle on backward flow of an Axial Fan with Adjustable Pitch Angle Blades)

  • 장택순;허진혁;문승재;이재헌
    • 플랜트 저널
    • /
    • 제5권1호
    • /
    • pp.45-50
    • /
    • 2009
  • In this study, the experimental study has carried out to select pitch angle on the backward flow in an axial fan that has adjustable pitch blades. With the change of pitch angle of axial fan with adjustable blade, air flow rate, pressure and air flow direction can be changed. Because of this merit, adjustable axial fan can be used in the backward flow. For the selection of the backward flow pitch angle, fan performance test method is selected by KS B 6311. Dynamic pressure, static pressure, electric current and voltage are measured in each pitch angles of axial fan that are $36^{\circ}$, $-16^{\circ}$, $-21^{\circ}$, $-26^{\circ}$, $-31^{\circ}$ and $-36^{\circ}$. In the result of test, fan performance curves at several pitch angle has been investigated. Finally, pitch angle of $-26^{\circ}$ has been selected to get largest flow rate at backward flow situation.

  • PDF

피치각 조정형 송풍-역풍 겸용 축류팬에서 배연용 피치각 선정을 위한 실험적 연구 (An Experimental Study on Selection Pitch Angle on backward flow of an Axial Fan with Adjustable Pitch Angle Blades)

  • 장택순;허진혁;문승재;이재헌;유호선;임윤철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.145-150
    • /
    • 2008
  • In this study, the experimental study has carried out to select pitch angle on the backward flow in an axial fan that has adjustable pitch blades. With the change of pitch angle of axial fan with adjustable blade, air flow rate, pressure and air flow direction can be changed. Because of this merit, adjustable axial fan can be used in the backward flow. For the selection of the backward flow pitch angle, fan performance test method is selected by KS B 6311. Dynamic pressure, static pressure, electric current and voltage are measured in each pitch angles of axial fan that are $36^{\circ}C$, $-16^{\circ}C$, $-21^{\circ}C$, $-26^{\circ}C$, $-31^{\circ}C$ and $-36^{\circ}C$. In the result of test, fan performance curves at several pitch angle has been investigated. Finally, pitch angle of $-26^{\circ}C$ has been selected to get largest flow rate at backward flow situation.

  • PDF

허브 캡 형상에 따른 축류송풍기 성능특성 (Performance Characteristics of an Axial Flow Fan According to the Shape of a Hub Cap)

  • 장춘만;최승만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.9-16
    • /
    • 2006
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces a negative incidence, thus invokes separated flow on the blade surfaces and deteriorates the performance of fan rotor.

불균일 입구유동에 대한 축류송풍기의 성능 특성 (Investigation on the Characteristics of an Axial Flow Fan Having Distorted Inlet Flow)

  • 최승만;장춘만;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.65-69
    • /
    • 2004
  • In the present work, characteristics of an axial flow fan haying distorted inlet flow produced by hub cap are investigated. The distorted inlet flow is generated by the shape of hub cap installed in front of the axial flow fan. Two different cases of hub cap geometry are analyzed to verify the influence of flow distortion. The flow fields are analyzed numerically by solving steady form of three-dimensional Reynolds-averaged Wavier-Stokes equation and standard k-$\epsilon$ model is used for a turbulence closure. The results obtained from the numerical simulation are compared to those from experimental measurements. It is found that the overall performance of the axial flow fan is increased by reducing the flow distortion at the hub. Detailed characteristics of the flow fields of two different geometric conditions are also discussed.

  • PDF