• Title/Summary/Keyword: Axial-flow Compressor

Search Result 124, Processing Time 0.023 seconds

Effects of Rotational Speed on the Performance in a Transonic Axial Compressor with a Dihedral Stator (회전속도가 상반각 정익을 적용한 천음속 축류 압축기 성능에 미치는 영향)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents a numerical investigation of the effect of the rotation speed on the performance in a transonic axial compressor with the dihedral stator. Four stator geometries with different stacking line variables were tested in the flow simulations over the whole operating range. It was found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occurred at low mass flow rate with the 100 % design speed. The hub dihedral stator could suppress the shroud loss region and consequently improve the stall margin. In case of the 70 % design speed condition as the mass flow rate decreased, it was seen that the high loss region was placed at the midspan of the rotor passage. The dihedral stator slightly affected the local diffusion factor, but the performance of the compressor was not changed.

Optimization of Blade Sweep in an Axial Compressor Rotor (축류압축기 동익의 스윕각 최적화)

  • Jang, Choon-Man;Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.437-442
    • /
    • 2004
  • The optimization of a blade sweep for a transonic axial compressor rotor (NASA rotor 37) has been performed using a response surface method and a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. Two shape variables of the rotor blade, which are used to define a blade sweep, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. The result shows that the adiabatic efficiency is increased to about 1 percent compared to that of the reference shape of the rotor blade. Relatively high increasement of the adiabatic efficiency is obtained between 20 and 60 percent span. In the present study, backward swept blade is more effective to increase the adiabatic efficiency In the axial compressor rotor.

  • PDF

Effective Performance Prediction of Axial Flow Compressors Using a Modified Stage-Stacking Method (단축적법의 개선에 의한 축류압축기의 효과적인 성능예측)

  • Song, Tae-Won;Kim, Jae-Hwan;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1077-1084
    • /
    • 2000
  • In this work, a modified stage-stacking method for the performance prediction of multi-stage axial flow compressors is proposed. The method is based on a simultaneous calculation of all interstage variables (temperature, pressure, flow velocity) instead of the conventional sequential stage-by-stage scheme. The method is also very useful in simulating the effect of changing angles of the inlet guide vane and stator vanes on the compressor operating characteristics. Generalized stage performance curves are used in presenting the performance characteristics of each stage. General assumptions enable determination of flow path data and stage design performance. Performance of various real compressors is predicted and comparison between prediction and field data validates the usefulness of the present method.

A Study on The Stage Matching of Multistage Compressor (다단 압축기의 단 매칭 기법에 관한 연구)

  • Choi, Chang-Ho;Kim, Jin-Han;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.163-168
    • /
    • 2000
  • A method to search the design parameters for optimum stage matching has been used based on a 1-D mathematical model of a compressor, which uses the data obtained from the preliminary test to identify the design parameters. This methodology was applied with a two-stage axial compressor, which was originally designed for a helicopter gas turbine engine. After Identifying design parameters using preliminary test data, an optimization process has been employed to achieve the best matching between the stages (i.e., maximum efficiency of the compressor at its operation modes within a given range of the rotor speed under given restrictions for required stall margins and mass flow). 3-D flow calculations have been performed to confirm the usefulness of the corrections based on 1-D mathematical model. Calculational results agree well with the experimental data in view of the performance characteristics. Some promising results were produced through the methodology proposed in this paper in conjunction with flow calculations.

  • PDF

A SENSITIVITY STUDY OF THE DISTORTED INLET FLOW IN AXIAL TURBOMACHINERY WITH NOVEL INTEGRAL SCHEME

  • Ng Eddie Yin-Kwee;Liu Ningyu;Lim Hong Ngiap;Tan Daniel
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • For proper installation, operation and performance of axial flow jet engines in aircrafts, the impacts and effects of inlet flow distortion in axial compressors have to be understood. Inlet distortion conditions may cause component-mismatch and instability problems known as rotating stall, and severe oscillations of mass flow rate called surge or a combination of both. Typical effects of this phenomenon include stresses and wear on the compressor blading, destruction of entire jet engines due to the failure of airfoil and mechanical failure or interruption of the combustion process. Therefore, it is important to study inlet flow distortion and its propagation effects to minimize and hence to prevent the occurrence of such calamity. The current novel integral method with parametric analysis signifies its validity to this field of research and offers much potential for further improvements. The present effort further indicates that this simple method may be flourishing in the problems of strongly distorted flow and propagating stall in axial compressor. It is therefore believe that using a more realistic and flexible velocity and pressure profiles could develop this approach further.

Design Optimization of Axial Flow Compressor Blades with Three-Dimensional N avier-Stokes Solver

  • Lee, Sang-Yun;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.1005-1012
    • /
    • 2000
  • Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. Governing differential equations are discretized using an explicit finite difference method and solved by a multi-stage Runge-Kutta scheme. Baldwin-Lomax model is chosen to describe turbulence. A spatially-varying time-step and an implicit residual smoothing are used to accelerate convergence. A steady mixing approach is used to pass information between stator and rotor blades. For numerical optimization, searching direction is found by the steepest decent and conjugate direction methods, and the golden section method is used to determine optimum moving distance along the searching direction. The object of present optimization is to maximize efficiency. An optimum stacking line is found to design a custom-tailored 3-dimensional blade for maximum efficiency with the other parameters fixed.

  • PDF

Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor (최적화 방법에 따른 축류압축기의 효율평가)

  • Jang, Choon-Man;Abdus, Samad;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor (수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석)

  • Song, Ji-Han;Hwang, Oh-Sik;Park, Tae Choon;Lim, Byung-Jun;Yang, Soo-Seok;Kang, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

Effect of the Dihedral Stator on the Loss in a Transonic Axial Compressor (상반각 정익이 천음속 축류 압축기 손실에 미치는 영향에 관한 연구)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.5-12
    • /
    • 2015
  • This paper presents a numerical investigation of the effect of the dihedral stator on the loss in a transonic axial compressor. Four stator geometries with different stacking line variables are tested in the flow simulations over the whole operating range. It is found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occur at low mass flow rate. The hub dihedral stator and bowed blade generate unexpected hub-corner-separation, thereby causing a large total pressure loss over the entire operating range. However, the corresponding blockage forces the high momentum flow near the hub to divert toward the upper part of the passage suppressing the negative axial velocity region. The dihedral stator increases deflection angle and secondary vorticity near the endwall where the dihedral is applied. As a result, the endwall loss which is related to the endwall relative velocity decreases.

A Study on the Redesign of the Two-Stage Axial Compressor for Helicopter Engines (헬리콥터용 2단 축류압축기의 재설계에 관한 연구)

  • Kim, Jin-Han;Choi, Chang-Ho;Kim, Chul-Taek;Yang, Sooseok;Lee, Daesung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.7-13
    • /
    • 2001
  • In developing a multistage compressor, the stage matching is one of the critical design issues. The mismatching can be often observed even if each stage has been proven good and then used as part of a compression system. A good matching among the stages can be achieved by changing various design parameters (i.e., passage cross sectional areas, blades angles, stagger angles, curvature, solidity, etc.). Therefore, designers need to find out what parameters must be changed and how much. In this study, a method to search the design parameters for optimum stage matching has been used based on an 1-D mathematical model of a compressor, which uses the data obtained from the preliminary test to identify the design parameters. This methodology is applied with a two-stage axial compressor, which was originally designed for a helicopter gas turbine engine. After identifying design parameters using preliminary test data, an optimization process has been employed to achieve the best matching between the stages (i.e., maximum efficiency of the compressor at its operation modes within a given range of the rotor speed under given restrictions for required stall margins and mass flow). 3-D flow calculations have been performed to confirm the usefulness of the corrections based on the 1-D mathematical model. Calculational results agree well with the experimental data in view of the performance characteristics. Some promising results were produced through the methodology proposed in this paper in conjunction with flow calculations.

  • PDF