• 제목/요약/키워드: Axial type impeller

검색결과 26건 처리시간 0.024초

전산유체역학을 이용한 워터펌프 축력 저감 (Reduction of the Axial Force of Water Pump Using CFD)

  • 조석현;신동성
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.83-87
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) method has been used to investigate the axial force of automotive water pump. As the excessive axial force can make some unexpected problems like impeller interference and coolant leakage we have focused on finding the cause of axial force and its reduction in this paper. First, we have tested the closed type water pump with and without balance hole by the calculation methods. By examining the pressure contour around the impeller, we have found that the axial force arises not only from the pressure difference around shroud but also from the pressure difference around hub. So we have tested two impellers - one is normal open type impeller and the other is open type impeller with modified hub. The results show that the axial force reduction is about 150~200N for normal one and 700N@3000RPM for modified impeller. And the hydraulic efficiency which is important in aspect of engine fuel efficiency is reduced about 6.5% for normal one but increased 4%@3000RPM for modified impeller.

CFD를 활용한 축류형 혈액펌프의 펌프 특성 해석 (Pump performance analysis of Axial Flow Blood Pump using CFD)

  • 최승한;김동욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.288-290
    • /
    • 2003
  • Artificial heart is divided by pulsation flow type and continuous flow type according to blood circulation pattern. Axial flow blood pump is a kind of continuous flow type artificial heart. Axial flow blood pump would be different pump performance according to impeller's shape and rotating velocity. Pump performance be able to compare by flow rate according to differential pressure and Impeller's rotating velocity. It confirms Impeller model of better efficiency according to compare Pump performance of axial flow blood pump using CFD with actual experiment result.

  • PDF

물질전달계수를 이용한 생물 반응기 운전 최적화 (Optimization of Bioreactor Operation by Mass Transfer Coefficient)

  • 김형순
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.243-251
    • /
    • 2001
  • The effects of various operating parameters(agitation speed, impeller type, antiform agents, impeller spacing etc.) on air-liquid mass transfer was characterized by volumetric mass transfer coefficient($k_La$). Also, the dual-impeller agitated systems are compared with single-impeller agitated systems with a special focus on its applications for bioreactors, $k_La$ was take over a range of 200~450 rpm of agitation speed, and 0.5~2.5 vvm of air flow rates, for four single impeller and impeller combinations consisting of four impeller types, namely rushton, pitched blade, scaba, intermig were tested. The rushton impeller showed the best $k_La$ as compared with other single impellers. The dual impeller system are found to be superior as compared to single impeller in all aspects, The best combination of the dual impeller was a intermig of axial flow type as an upper impeller and a rushton of radial flow type as a lower part. Also, the control of the DO level with the variation of agitation speed was more efficient than that with an increase in air flow rate. The addition of antiform dropped the $k_La$ very large up to 1g/L regardless the type. PPG was less effect on $k_La$ than other antiforms. The impeller spacing and presence of solute are found very effective on $k_La$. When the $NaNO_3$is presented as solute, the $k_La$ increased approximately 50% then control.

  • PDF

Hydraulic Force and Impeller Evaluation of a Centrifugal Heart Pump

  • Timms, D.L;Tan, A.C.C;Pearcy, M-J;Mcneil, K;Galbraith, A
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.376-381
    • /
    • 2004
  • A rig was constructed to test the performance characteristics and compare the hydraulic forces exerted on a centrifugal type artificial heart impeller. A conventional shaft. seal and bearing system. while driven by a small electric motor. supported the impeller which was separated from the pump casing by a six degree of freedom force transducer (JR3 Ine). Radial (x. y) and axial (z) hydraulic forces were recorded and compared. At physiological operating conditions. the results indicate that the double entry/exit centrifugal pump encounters a smaller radial force and significantly reduced axial thrust. These experimental results are valuable in the design of a magnetic bearing system to suspend the impeller of a centrifugal artificial heart pump. This experimental technique may also be applied to evaluate the required capacity and predict the lifetime of contact bearings in marine pumps.

양방향 축류펌프용 임펠러 블레이드의 형상최적설계 (Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump)

  • 백석흠;정원혁;강상모
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1141-1150
    • /
    • 2012
  • 이 논문은 선박에서 자세 안정용 양방향 축류펌프에 대한 임펠러 블레이드의 형상최적설계를 설명한 것이다. 양방향 축류펌프용 블레이드는 대칭형 익형을 사용하므로 효율이 기존의 단방향 축류펌프보다 낮다. 이러한 양방향 축류펌프의 단점을 최소화 하고 효율을 증가시키기 위해 최적설계기법을 사용하였다. 양방향 축류펌프의 성능 개선을 위해 상용 CFD 프로그램인 ANSYS CFX v.13 을 이용하여 유동해석을 수행하였다. 직교배열표, 분산분석과 직교다항식을 이용한 대리모델기반 최적설계방법은 최적 설계변수를 결정하고 주효과를 찾는데 사용하였다. 최적설계 결과로부터, 임펠러 블레이드의 유효한 설계변수를 확인하고 이의 최적해와 설계요구조건 만족에 대한 유용성을 설명하였다.

전산유체역학을 이용한 산업용교반기의 Impeller형상에 따른 유동특성 (Flow Characteristics about Industrial Agitators Impeller Shape by CFD)

  • 김동균;배석태;이철재;박재현;김오근
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.321-322
    • /
    • 2006
  • Industrial agitators are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial agitators are not systematically investigated. The present study alms for clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types, Screw type and Rushton turbine type. In this study flow characteristics of the impeller using CFD. The rotating speed of impellers fixed about 100RPM. These three types of Impeller show that typical flow characteristics of axial turbine and suitable for mixing powder

  • PDF

마이크로 수력 발전을 위한 프로펠러형 림구동 축류 터빈 설계 (Design of a Propeller Type Rim-Driven Axial-Flow Turbine for a Micro-Hydropower System)

  • 오진안;방덕제;정노택;이수민;이진태
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.183-191
    • /
    • 2022
  • A design method for a propeller type rim-driven axial-flow turbine for a micro-hydropower system is presented. The turbine consists of pre-stator, impeller and post-stator, where the pre-stator plays a role as a guide vane to provide circumferential velocity to the on-coming flow, and the impeller as a rotational power generator by absorbing angular momentum of the flow. BEM(Blade Element Method), which is based on the turbine Euler equation, is employed to design the pre-stator and impeller blades. NACA 66 thickness form and a=0.8 mean camber line, which is widely accepted as a marine propeller blade section, is used for the pre-stator and turbine blade section. A CFD method, derived from the discretization of the RANS equations, is applied for the analysis of the designed turbine system. The design conditions of the turbine is confirmed by the CFD calculation. Turbine characteristic curve is calculated by the CFD method, in order to provide the performance characteristics at off-design operation conditions. The proposed procedures for the design of a propeller type rim-driven axial-flow turbine are established and confirmed by the CFD analysis.

축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발 (A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing)

  • 안치범;문기철;정기석;남경원;이정주;선경
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

PIV에 의한 교반기내의 산업용 임펠러형태에 따를 비정상 유동특성에 관한연구 (A Study on Unsteady Flow Characteristics in Industrial Mixers with Various Types Impeller by PIV)

  • 남구만;김범석;김정환;강문후;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.678-683
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz. The maximum velocity around PBT impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high -viscosity materials.

  • PDF

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.