• Title/Summary/Keyword: Axial loading

Search Result 1,023, Processing Time 0.024 seconds

Fatigue Life Estimation Using the Multi-Axial Multi-Point Load Counting Method under Variable Amplitude Loading (가변진폭하중하에서 다축-다점 하중 Counting method를 이용한 피로수명평가)

  • Lee, W.S.;Lee, H.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.22-27
    • /
    • 1997
  • In general, the load which acts on the structure is almost independent of time in many locations. In this case. It is difficult to estimate the life with the service load history, because the structure is on the multi- axial and multi-point loading states. In this study, the service load of the excavator which is widely used in industry field was calculated using measured cylinder pressures and displacements. The fatigue life was estimated using the multi-axial and multi-point load counting method. Service load history of 4 pin joint which act independently each other is yielded by mult-axial and multi-point load counting method. The stress spectrum is yielded by superposition of the results of FEM stress analysis applied unit load. Palm- gren-Miner's cumulative Damage is 0.000804 for Von Mises equivalent stress sequence by one side fillet weld S-N curve. This result agress with Bench test results. As a result of this study, the fatigue life esti- mation using the multi-axial and multi-axial and multi-point load counting method is useful.

  • PDF

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb;Fahad, Muhammad;Aslam, Muhammad
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.81-105
    • /
    • 2022
  • The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

Research on seismic performance of regionally confined concrete circular column with trapezoid stirrups

  • Longfei Meng;Hao Su;Yanhua Ye;Haojiang Li
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.587-600
    • /
    • 2024
  • In order to investigate the seismic performance of regionally confined concrete circular column with trapezoid stirrups (TRCCC) under high axial compression ratio, the confinement mechanism of regionally confined concrete was analyzed. Three regionally confined concrete circular columns with trapezoid stirrups were designed, and low cyclic loading tests were conducted at three different axial compression ratios (0.9, 1.1, 1.25) to study the failure mode, hysteresis curve, skeleton curve, deformation capacity, stiffness degradation and energy dissipation capacity of the specimens. The results indicate that the form of regional confinement concrete provides more uniform confinement to the normal confinement, and the confinement efficiency at the edges is 1.4 times that of normal confined concrete. The ductility coefficients of the specimens were all greater than 3 under high axial compression ratios, and the stiffness and horizontal bearing capacity increased with the increase of axial compression ratio. Therefore, it is recommended that the code of design specifications can appropriately relax the axial compression ratio limit for TRCCC. Finally, the spacing between stirrups of TRCCC was analyzed using ABAQUS software. The results showed that as the spacing between the stirrups decreased, the cracking load and peak load of TRCCC increased continuously, but the rate of increase decreases.

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Seismic performance of RC piers with partial lap-spliced longitudinal bars under different loading conditions (소수겹침이음을 갖는 중실단면 교각의 하중변화에 따른 내진성능)

  • An, Jun-Hyuk;Sun, Chang-Ho;Kim, Ick-Hyun;Lee, Jong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.214-217
    • /
    • 2006
  • It is well known that RC piers having 50% of lap-spliced longitudinal bars in plastic hinge region have a good ductility relatively. But the deformability under various loading condition is not confirmed. In this study scale models with different confinement were tested under different axial loads and loading cycles. It was confirmed that deformability was decreased with increase of axial force and number of loading cycles and that the models having 75% of confinement specified in present code satisfy the required seismic performance.

  • PDF

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.

Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study

  • Chun, Kwonsoo;Yang, Inchul;Kim, Namhoon;Cho, Dosang
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.5
    • /
    • pp.412-418
    • /
    • 2015
  • Objective : To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. Methods : Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. Results : As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. Conclusion : These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

Joint stability of internal conical connection abutments with or without hexagon indexes: an in vitro study (내부연결 원추형 임플란트의 육각구조의 유무에 따른 연결부 안정성: 실험적 연구)

  • Lee, Sang-Woon;Cha, Min-Sang;Lee, Ji-Hye;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.95-103
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the axial displacement of the hexagonal and conical abutment in internal conical connection implant after screw tightening and cyclic loading. Materials and Methods: Internal conical connection implants were divided into two groups (n = 10): group HEX, hexagonal abutment; and group CON, conical 2-piece abutments. The axial displacement and removal torque values were measured after 30 Ncm torque tightening and 250N loading test of 100,000 cycles. The Student t test with 5% significance level was used to evaluate the data. Results: HEX group demonstrated significantly higher axial displacement values after 30 Ncm tightening in comparison to the CON group (P < 0.05). No significant difference was found in axial displacement after cyclic loading (P = 0.052). Removal torque loss before and after the cyclic loading both revealed no significant difference between groups (P = 0.057 and P = 0.138). Removal torque value decreased after cyclic loading in both groups (P < 0.05). Conclusion: Overall, both abutment with or without hexagon index presented similar biomechanical performance except HEX group demonstrated significantly more axial displacement after applying tightening torque.