• Title/Summary/Keyword: Axial loading

Search Result 1,032, Processing Time 0.025 seconds

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.

Member Sizing Method in IsoTruss® Grid High-rise Building Structures Based on Stiffness Criteria (강성도 기준에 따른 IsoTruss® 그리드 고층건물의 부재선정 방법)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.50-56
    • /
    • 2017
  • The perimeter structure in high-rise buildings, which plays a major role in resisting lateral forces, is generally formed by the orthogonal placement of the beam and column, but currently various grid patterns are implemented. In a previous study, the adaptability of the $IsoTruss^{(R)}$ grid (ITG) as a perimeter structure was examined. In this study, a method of estimating the required cross sectional area of a member in a preliminary design is proposed. The members of the perimeter structure are placed in three planes, perpendicular (PPR), parallel (PPL) and oblique (POQ) to the lateral loading, and the stiffness of the members in the POQ was taken into account by projecting them onto the PPL or PPR. Three models are established for member size zoning through the height of the building, in order to investigate the effect of the shear and moment in the calculation of the required cross sectional area. To examine the effectiveness of this study, a 64-story building is designed and analyzed. The effect of the member size zoning was examined by comparing the maximum lateral displacement, required steel amount, and axial strength ratio of the columns. Judging from the maximum lateral displacement, which was 97.3% of the allowable limit, the proposed formula seems to be implemental in sizing the members of an ITG structure at the initial stage of member selection.

Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Using 3D Finite-Element Limit Analyses (3차원 유한요소 한계해석을 이용한 원주방향 경사관통균열 배관의 소성한계하중)

  • Jang, Hyun-Min;Cho, Doo-Ho;Kim, Young-Jin;Huh, Nam-Su;Shim, Do-Jun;Choi, Young-Hwan;Park, Jung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1329-1335
    • /
    • 2011
  • On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions.

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Behavior of Wide Beam-Column Interior Joint with Slab (횡력을 받는 넓은 보-기둥 내부 접합부의 거동 평가)

  • Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.433-449
    • /
    • 2012
  • An experimental investigation was conducted to study the behavior of RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were the ratio of column-to-beam flexural capacity ($M_r={\Sigma}M_c/{\Sigma}M_b$ ; 0.77~2.26), ratio of the column-to-beam width (b/H ; 1.54, 1.67). Test results are shown that (1) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column. (2) the presence of a slab have an effect on the performance of the wide beam-high strength concrete column interior joints(type 2). therefore in the design of the wide beam-high strength concrete column interior joints(type 2), the width of slab effective as a T beam flange should be considered. It was show that the case of the ratio of column-to-beam flexural capacity is more than 2.0, the effective width of slab are 2 times of an effective depth of wide beam, however if the ratio of column-to-beam flexural capacity is 1.4~2.0, the effective width of slab are not able to be considered.

Fatigue Constrained Topological Structure Design Considering the Stress Correction Factor (응력 수정 계수를 고려한 피로 제약 조건 구조물의 위상최적설계)

  • Kim, Daehoon;Ahn, Kisoo;Jeong, Seunghwan;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • In this study, a structure satisfying the fatigue constraint is designed by applying the topology optimization based on the phase field design method. In order to predict life based on the stress value, high cycle fatigue failure theory in which stress acts within the range of elastic limit is discussed and three fatigue theories of modified-Goodman, Smith-Watson-Topper and Gerber theory are applied. To calculate the global maximum stress, a modified P-norm stress correction method is used. As a result, it is possible to obtain topology optimization results that minimize the volume while satisfying the fatigue constraints. By applying the phase field design method, a simple shape with a minimized gray scale was obtained, and the maximum stress value acting on the optimization result became very close to the allowable stress value due to the modified P-norm stress method. While previous studies does not consider the stress correction factor, this study proposes the determination method regarding the stress correction factor considering loading effects related to axial stress components.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

Study on The Qptimization of Operating Conditions of batch-type Grain Dryer (평면식 건조기의 적정작업조건 설정에 관한 연구)

  • 박경규;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.4
    • /
    • pp.3600-3610
    • /
    • 1974
  • Experimental work of batch-type dryer was conducted to develop its optimurm operating conditions by analyzing the major factors which affect the drying performance. A laboratory batch-type dryer was constructed and tested for various levels of heated-air rates, and depths of grain deposit. Tong-il rice variety having the initial moisture content of approximaely 23 per cent in wet basis was used for the experiment. The criteria selected for establishing the optimum operating condition were the drying performance rate, the thermal efficiency, and the operational cost of the dryer. The results of the study are summarized as follows: 1. The performance rate of dryer for a specific operating condition was defined as total amount of material dried per hour when the moisture content of grains in the upperlayer reaches to 16 per cent in wet basis. The optimum operating conditions as viewed in the rate of drying performance could be justified by functional realtionship between the depth of grain deposit and air flow rate. In other words, there was a definite depth of grain deposit for a given air-rate which make the dryer performance maximum. The optimum grain depth for the batch-type dryer with 3.3㎡ loading area and with the attached axial fan was about 35cm. 2. The thermal efficiency for the dryer was evaluated by the ratio of the latent heat required to evaporate the grain moisture to the heat input required to raise the ambient air-temperature to 40 degree centigrade. The optimum operating condition as viewed in term of thermal efficiency analyzed was that grater depth and lower air flow-rate may be desirable. This condition is contracted with the optimum condition as viewed by the dryer performance rate. 3. The annual operating cost of batch-type dryer was analyzed for different annual hour of use and for different operation condition. The optimum condition as viewed in terms of operating cost was almost identical to one as viewed in terms of dryer performance rate. Therefore, the most economical use of batch-type dryer for the same annual operating hours can be obtained when the dryer operated in the condition of maximum dryer performance rate. Increasing the annual operating hour may be desirable to cut down the dryer operation cost, since the annual hour of dryer use is much sensitive to the operating cost than any peractical conditions of dryer operation. 4. The most desirable operational condition as justified by combining all the criteria, dryer performance rate, thermal efficiency and annual operating cost, could be concluded to operate the dryer in the condition of maximum performance rate. The condition in general is identical to the lowest operation cost for a given annual operating hour.

  • PDF

Effects of Screw Diameter and Thread Shape on the Strength of Transpedicular Screw Fixation in Posterior Spinal Fusion (후방 척추고정술에서 척추경 나사못의 크기와 형태가 척추 고정력에 미치는 영향에 대한 연구)

  • Mun, Mu-S.;Ryu, Jei-C.;Yoo, Myung-C.;Kim, Ki-T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.23-26
    • /
    • 1995
  • The objectives of the present study are 1)to find the effect of the diameter of transpedicular screws on their fixational strength in pedicles under static pull-out loading, 2)to determine the biomechanical correlation between the pedicle diameter and the screw diameter, and 3)to find the effects of other factors in the screw design, such as materials, screw pitch, thread height and shape on their fixational strength. Biomechanical tests (Test I) were performed to evaluate the effect of the screw diameter on pull-out strength by using 60 porcine pedicls and six groups of custom-made pedicle screws with different diameters (the major and the minor diameter of the screws used in the testing varied from 4mm upto 9mm and from 3mm upto 8mm, respectively) while all other factors (materials, screw pitch, thread height and shape etc.) were fixed. In Test II, by using 61 porcine pedicles, the relationship between the ratio of the pedicle diameter and the screw diameter(=aspect ratio) of the custum-made screw and the pull-out strength of the screw was investigated. Test III was performed with 94 porcine pedicles and 8 different types of the commercial screws from 6 major productors in order to determine the effect of the screw diameter, pitch and the thread shape on the pull-out strength of the screw, respectively. The results of Test I showed that the axial pull-out resistance of the screw could be increased prportionaly to the screw diameter(P<0.05). But this increase in the pull-out resistance did not found when the screws of 4mm or 9mm in the diameter were employed. It was found from the results of Test II that the screws had its maximum pull-out resistant force when the aspect ratio ranging 40 - 69% (P<0.05). based on the results for the major diameter against the minor diameter of screw, the maximal pull-out resistance was found at 60-65% (P<0.05). According to these biomechanical testing results, it seems that the screw with a moderately large pitch is more desirable and the buttress-shaped screw can provide stronger fixation than the V-shape one can, if other designal factor and conditions were fixed.

  • PDF

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.