• 제목/요약/키워드: Axial groove

검색결과 65건 처리시간 0.025초

스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part II: 그루브 설계 파라미터의 상세 성능평가 (Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part II: Detailed Performance Evaluation of Groove Design Parameters)

  • 이안성;양재훈;최동훈
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.68-76
    • /
    • 2004
  • Applying a general Galerkin FE lubrication analysis method to spiral groove dry gas seals, this study intends to analyze in detail the effects of groove design parameters, such as a spiral angle, groove width ratio, groove radius ratio, groove depth ratio, and groove taper ratio, on the lubrication performances of an opening force, leakage, axial stiffness and damping, and angular stiffness and damping at low and high rotating speeds: 3,600 and 15,000 nm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a spiral angle of $25^{\circ}$, a groove width ratio of 0.46, a groove radius ratio of 1.1, a groove depth ratio of 1.0, and a groove taper ratio of 0.0 are preferred. Where the recommended relatively low values of groove depth and taper ratios are to keep the axial and angular dampings positive or higher than 0 particularly at the high rotating speed.

다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석 (Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures)

  • 최우천;신용호;최정환
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

제어널 베어링의 정특성에 미치는 급유 조건의 영향

  • 정경민;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1990년도 제12회 학술강연회초록집
    • /
    • pp.46-57
    • /
    • 1990
  • It is known that the effects of oil supply conditions on the characteristics of plain journal bearings are significant and especially the dynamic characteristics are affected by cavity region. For various shapes (axial groove, spiral groove, X-shape groove) and positions of oil grooves, the pressure distribution and the static performance of plain journal bearings are obtained with numerical methods. Elrods algorithm which implements JFO oil rupture/reformation boundary condition is used in order to take into account the effect of cavity region. It is shown that in the cases of axial groove or X-shape groove the load capacity and the attitude angle are affected by the groove position but the effect of spiral groove position is less significant.

  • PDF

저어널 베어링의 정특성에 미치는 급유 조건의 영향 (The effects of oil supply conditions on the static characteristics of plain journal bearings)

  • 정경민;김경웅
    • Tribology and Lubricants
    • /
    • 제6권2호
    • /
    • pp.76-87
    • /
    • 1990
  • It is known that the effects of oil supply conditions on the characteristics of plain journal bearings are significant and especially the dynamic characteristics are affected by cavity region. For various shapes (axial groove, spiral groove, X-shape groove) and positions of oil grooves, the pressure distribution and the static performance of plain journal bearings are obtained with numerical methods. Elrods algorithm which implements JFO oil rupture/reformation boundary condition is used in order to take into account the effect of cavity region. It is shown that in the cases of axial groove or X-shape groove the load capacity and the attitude angle are affected by the groove position but the effect of spiral groove position is less significant.

스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part I: 유한요소 해석 및 기본 성능평가 (Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part I: EE Analysis and Basic Performance Evaluation)

  • 이안성;양재훈;최동훈
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.58-67
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method for the compressible Reynolds equation in cylindrical coordinates is presented. Then, the method is applied for analyzing lubrication performances of spiral groove dry gas seals. The effects of toning and number of groove on performance indices are evaluated at low and high rotating speeds: 3,600 and 15,000 rpm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a negative or small coning and a large number of groove are preferred.

원심펌프의 축추력 제어법에 관한 연구 (A Method of Axial Thrust Control in Centrifugal Pump)

  • 최영도;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.15-20
    • /
    • 2007
  • In order to control and balance axial thrust of turbo machine, many types of balancing devices are used but most of them are complicated and sometimes cause troubles. In this study, a very simple device of using shallow grooves mounted on a casing wall, known as "J-Groove", is proposed and studied experimentally and theoretically. The result shows that 70% of axial thrust in an industrial 4-stage centrifugal pump can be reduced at the best efficiency point. Moreover, the analytical method of "interfered gap flow" is established and a simple formula which can determine the optimum dimension of groove and its location is proposed.

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

케이싱 그루브가 존재하는 축류압축기의 성능특성 연구 (A Study on Performance Characteristics of an Axial Compressor with the Casing Groove)

  • 최광진;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.24-29
    • /
    • 2010
  • This paper presents a study on the performance of NASA Rotor 37 with the casing grooves based on three-dimensional numerical analysis. Reynolds-averaged Navier-Stokes equations are solved on a hexahedral grid with the shear stress transport model as a turbulence closure model. The governing equations are discretized by a finite volume method. The validation of the numerical results is performed through experimental data for the total pressure ratio and the adiabatic efficiency. The investigation for an axial compressor with a smooth casing and the casing grooves is carried out to compare the performance parameters, for example, surge margin and efficiency, etc. The surge margin is improved in the case of the casing grooves while remarkable improvement of the efficiency is not produced. The result shows that the casing groove is beneficial to expand the operating range of NASA Rotor 37.

축인장하(軸引張下)의 평판(平板)의 단부(段部) Fillet 근처(近處)의 Relieving Groove가 응력집중(應力集中)에 미치는 영향(影響) (Effect of the Semi-circular Relieving Groove on the Stress Concentration at the Fillet of the Stepped Bar under Axial Tension)

  • 김효철
    • 대한조선학회지
    • /
    • 제6권2호
    • /
    • pp.5-10
    • /
    • 1969
  • A stepped bar with seimi-circular stress relieving groove near the fillet was subjected by axial tension in a polarized light field. On the stress concentration factor, the effect of the ratios of the fillet radius, the distance between two relieving grooves and the groove radius to the breath of the narrower portion of the stepped bar have been investigate. Observing the stress concentration in 48 models with various proportions, the conclusion arrived at were as follow: 1) If the fillet radius of the stepped bar is larger than half breadth of the narrower portion, the reduction of the stress concentrations can not be expected. 2) If the fillet radius is smaller than half breadth of the narrower portion of the stepped bar, the stress concentration can be droped to the reasonable range. 3) When the groove radius is larger than a quarter of the difference between the distance of two relieving grooves and the breadth of the stepped bar and smaller than a half of that, the stress concentration factors can have their possible minimum value. 4) When the sun of the breadth of the narrower portion of the stepped bar and twice of the relieving groove radius is smaller than the distance between two relieving grooves, minimum stress concentration can be obtained.

  • PDF

그루브형 태양열 집열용 히트파이프의 열성능 해석 (Analysis for Thermal Performance of Axially Grooved Heat Pipe for Solar Collector)

  • 홍정규;서정세;변길성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2123-2128
    • /
    • 2004
  • In this study, analysis is made for the effects of groove shape on the thermal performance of a axial groove heat pipe. The mathematical models of two-phase flow in grooved heat pipe are presented for the capillary limitation in steady state. Generally, the heat pipe performance depends on the capillary pressure and liquid flow. The friction force of liquid flow through the groove increases with the groove width decreased, and then the capillary pressure is improved in the gas-liquid interface of groove. Therefore, the optimal groove width shaper exists for the maximum thermal performance of heat pipe. In this paper, the optimal groove shape and scale are presented by considering both capillary pressure and liquid flow.

  • PDF