• Title/Summary/Keyword: Axial effect

Search Result 1,916, Processing Time 0.03 seconds

Reliability Assessment of Buried Pipelines with a Circumferential Surface Elliptical Crack under Axial Stress (축직각 표면타원균열이 존재하는 매설배관의 축방향응력에대한 건전성 평가)

  • Lee, Eok-Seop;Hwang, In-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.160-166
    • /
    • 2001
  • The theoretical analyses for stresses induced in axial direction in the buried pipelines are reviewed. The influences of the axially directed stresses on the surface elliptical crack are studied in detail and thus some engineering technical informations are provided to use reliability assessment of buried pipelines. The change in temperature, the effect of inner pressure and soil friction in the buried pipeline constrained in axial direction are included to determine the axial stresses in the buried pipeline. Furthermore, the stress induced by the pipeline bending are also considered. The stress intensity factors calculated by two models such as a simple plane crack and an elliptical surface crack for a circumferential surface elliptical crack are compared.

  • PDF

Reliability Assessment of Buried Pipelines with a Circumferential Surface Elliptical Crack under Axial Stress (축직각 표면타원균열이 존재하는 매석배관의 축방향응력에 대한 건전성 평가)

  • 이억섭;황인현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.417-420
    • /
    • 2000
  • The theoretical analyses for stresses induced in axial direction in the buried pipelines are reviewed. The influences of the axially directed stresses on the surface elliptical crack are studied in detail and thus some engineering technical informations are provided to use reliability assessment of buried pipelines. The change in temperature, the effect of inner pressure and soil friction in the buried pipeline constrained in axial direction are included to determine the axial stresses in the buried pipeline. Furthermore, the stress induced by the pipeline bending are also considered. The stress intensity factors calculated by two models such as a simple plane crack and an elliptical surface crack for a circumferential surface elliptical crack are compared.

  • PDF

Estimation of Axial Nail Force Considering Cracks and Creeps of Grout (그라우트의 균열 및 Creep 현상을 고려한 쏘일네일의 축인장력 산정)

  • 임유진;황상기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.159-166
    • /
    • 2000
  • A new method of estimating axial nail force is proposed. An instrumented soil nail wall is selected to investigate the effectiveness of the new proposed method. The new method includes effect of creep and age of cement grout surrounding the steel bar, The new method also considers cracks in the grout generated during and after the end of the wall construction. It is found from this study that a reduced grout stiffness due to creep with age and crack of the grout must be considered for estimating correct axial nail forces. The reduced grout stiffness is considered also providing significant part of axial nail load compared to that of steel bar.

  • PDF

Variation of Rail's Axial Compressive Force on Railway Bridges Due to Thermal and Seismic Loads with using EQS Bearings (EQS 면진받침 사용 시 온도하중 및 지진하중에 대한 철도교량 레일 압축력 변화)

  • Kim Lee Hyeon;Kim Haksoo;Choi Eunsoo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2005
  • This study discussed the effect on rail's axial force due to thermal and seismic loads according to supporting conditions of railway bridges; the considered supporting conditions are 1)simply supported, 2)roller at both ends, and 3)roller with horizontal spring at both ends. Closed form solutions are used to calculate the axial farces on rails. The roller at both ends of a bridge span decreases the compressive axial force on rail due to thermal load compared with the simply supported condition. However, the lateral springs at roller are not helpful to decrease the rail's compressive axial force.

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

A Study on The Formation of Inferior Space in Louis I. Kahn's Architecture (루이스 칸 건축의 내부공간 형성에 관한 연구)

  • Yoon, Dong-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.5
    • /
    • pp.23-30
    • /
    • 2008
  • This thesis aims to analyze the visual perceptual effects drawn by 'axial composition and divergence' and to interpret the architecture of Kahn in respect of 'axial composition and divergence'. Axial composition of the form, the location of the entrance and divergence of internal movement were checked up about 53 works by extracting parti which is basic element of spatial composition. The 3D modeling simulation was performed for the selected 10 works in order to analyze the visual perceptual effect due to divergence of the internal movement. The reaction of the observer's actions and visual perception by 'axial composition and divergence' is presented in the following steps. 1. Divergence of the entrance/a panorama of expanding planes. 2. Divergence of internal movement/The process of perception of visual rotation and central spatial form. 'Perceptive form' created by 'divergence' is the result of diverse and flexible series of processes which must be experienced in person in order to reach the space as a room with a definite domain and center.

A Study on the Performance Test of Axial-flow Cyclone Separator (축상유입식 사이클론 집진기 성능시험에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.101-106
    • /
    • 2020
  • Along with dust collection efficiency, pressure loss is a very important cyclone operation factor. A severe rise in pressure loss causes the problem of cost. To solve the problem, the method connecting axial-vane type cyclones in parallel is suggested recently. The axial vane type cyclone dust collector applied in this study is a small portable type. Multiple cyclones are installed in a round type. The basic performance test on the axial vane type cyclone dust collector was conducted. As a result, the cut size reduced along with a rise in the wind velocity of the cyclone dust collector inlet. According to the test on dust collection efficiency, the effect of dust collection began to appear in the range of 3㎛ and dust collection efficiency was greatly improved at 5 ㎛. The noise of the cyclone dust collector well met the fan sound power level of KSB 6361.

Experimental Studies of the Forming Process for the Tubular Hydroforming Technology (관재 하이드로 포밍에 의한 성형 공정의 실험적 연구)

  • 김성태;임성언;이택근;김영석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • In this paper, we developed the hydroforming simulator which can apply an axial compressive force and high internal pressure to bulge a tube. Experimental dtudies have been performed to investigate the effect of each parameters such as internal pressure and axial compression stroke required for the forming of circular components. Under the improper forming conditions there were two forming failures. One was the axial buckling due to excessive axial compressive load and the other was the circumferential necking fracture due to relatively high internal pressure. A safe forming zone without any failures exists between these two extreme zones. Also the condition of forming failure such as fracture is examined throughout the theoretical analysis. This paper covers a brief overview of the mechanism of hydroforming process as well as the design of die and tools.

  • PDF

A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure) (디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책))

  • 전효중;이돈출;김의간;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.