• Title/Summary/Keyword: Axial direction

Search Result 903, Processing Time 0.027 seconds

A Study on the Temperature Distribution at the Surface of Diesel Particulate Filter and Partitioned Electric Heater according to the Conditions of Heating and Flow using an Infrared Temperature Camera (적외선 온도 카메라를 이용한 분할형 전기히터 가열 및 유동 조건에 따른 전기히터와 매연필터 표면에서의 온도 분포에 관한 연구)

  • Lee, Choong-Hoon;Paik, Sung-Chon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.7-14
    • /
    • 2008
  • The temperature distribution in a surface of diesel particulate filter(DPF) was measured using an infrared temperature camera. In order to regenerate the DPF, five partitioned electric heaters were used for heating the ceramic filter. The five partitioned heaters were switched on/off with some time interval one the other. The surface temperature distribution in the ceramic filter and electric heaters were measured with varying both the electrical power supply to the heaters and the mass flow rate of the air supply from a blower. The higher mass flow rate in the DPF system enhanced the uniformity in the surface temperature distribution of the ceramic filter due to effective convection heat transfer. The flow in the monolith ceramic structure of the DPF move mainly in the axial direction, which could be identified from the surface temperature of the ceramic filter.

Research on Insulation Design of the Bushing for a 154kV Class HTS Transformer (154kV급 고온초전도 변압기용 부싱의 절연설계에 관한 연구)

  • Kwag, D.S.;Cheon, H.G.;Choi, J.H.;Kim, H.J.;Yun, M.S.;Kim, Y.S.;Kim, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.216-217
    • /
    • 2006
  • A common problem in many fields of cryogenic power engineering is to apply high voltage to cold parts of superconducting equipment. In many of these cases a bushing provides electrical insulation for the conductor which makes the transition from ambient temperature to the cold environment. The cryogenic high voltage bushing for the 154kV, 100MVA high temperature superconducting(HTS) transformer is described. The bushing is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors, in the axial direction there is a temperature difference from ambient to about 77 K. For the insulation design of cryogenic bushing, the arrangement of condenser cone and electrical insulation characteristics of GFRP, Air, $LN_2$ and $GN_2$ were discussed in this paper.

  • PDF

Analysis of MRPC Probe Signal According to Defect Size Variation for S/G Tube in Nuclear Power Plant (원전SG세관의 결함크기에 따른 MRPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Song, Ho-Jun;Lim, Keon-Gyu;Lee, Hyang-beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1008-1010
    • /
    • 2005
  • In the examination of steam generator(SG) tube in nuclear power plant, eddy current testing probes play an important role in detecting the defects. Bobbin probe and MRPC probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary MRPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it has excellent detection capability for small cracks, which is hardly detected by bobbin probe. In this paper, for the accurate analysis of experimental ECT signals, construction of MRPC probe signals database according to the variation of defect size is the main purpose. Using 3-D finite element method, ECT signals are analyzed, and signals analysis add according to frequency ingredient. The results, which are analysis and characteristics ion of electromagnetism simulation signals, is databased.

  • PDF

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Circumferential Alignment of Vascular Smooth Muscle Cells in a Cylindrical Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.274.1-274.1
    • /
    • 2013
  • We report the circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel to form an in vivo-like smooth muscle cell layer. To realize a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, we first fabricated a half-circular polydimethylsiloxane (PDMS) microchannel by soft lithography using a convex PDMS mold. The orthogonally micro wrinkle patterns were generated inside the half-circular microchannel by stretching-releasing operation under UV irradiation. Upon UV treatment with uniaxial 40 % stretch of a PDMS substrate and releasing process, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel were generated, which could guide the circumferential alignment of HASMCs successfully during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs revealed the in vivo-like cell phenotype. Finally, we produced circular microchannels by bonding two half-circular microchannels, and cultured the HASMCs circumferentially with high alignment and viability for 5 days. These results are the first demonstration for constructing an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide novel bioassay platforms for in-depth study of HASMC biology and vascular function.

  • PDF

Study on Accuracy of Product by Radial Deformation of Die in Backward Extrusion (후방압출 공정에서 금형의 반경반향 변형량을 통한 제품정밀도에 관한 연구)

  • 이강희;박태식;박용복
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.498-503
    • /
    • 2003
  • The die for cold forging gets a very high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain the product with highly accurate dimension, therefore, it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between the die and the product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion, which can be applied in the die design for the product with accurate dimension.

A Study on the Improvement of Cutting Precision by the Ultrasonic Vibration Cutting (초음파 진동 절삭에 의한 가공정도 향상에 관한 연구)

  • Kang, Jong-Pyo;Kim, Byong-Hwa;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 1991
  • The ultimate target of machining process is to get both precision and productivity simultaneously. To obtain these effects, many kinds of machining methods have been considered and various research effort has been made for a long time. Ultrasonic vibration cutting method is one of these methods. When the ultrasonic vibration is applied on the workpiece or the tool, the cutting tool makes periodical contact with workpiece due to vibration. The cutting is performed by vibrating impact force while the cutting tool contacts the workpiece, and it makes the displacement of both the tool and workpiece minimum in three force component (principal, axial, radial force) direction during the cutting process. So the cutting precision is better than conventional cutting method. The main results that obtained by the expriments of ultrasonic vibration cutting are as follows; 1. The value of roundness is about 1.4 ~ 2.5 [${\mu}m$] and this value is three or four times less than that of conventional cutting. 2. The value of surface roughness is about 1.2~2.2 [${\mu}m$] and this value is the two or three times less than that of conventional cutting.

  • PDF

Development of Manufacturing Process for Long-Neck Flange by Spinning (스피닝을 이용한 롱넥플랜지의 성형공정 개발)

  • Gwak, Gi Yeol;Cho, Jong Rae;Choi, Jin Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.929-935
    • /
    • 2015
  • The long neck flange is used to connect piping arrangements where the lap joint is applied. Generally, the component can be manufactured by welding, but this method is both time and cost intensive. Embrittlement at the heat affected zones was also considered. A spinning method developed to improve the manufacturing process and solve the problems of welding. The flange area of the long neck flange can be formed by changing the direction of the metal flow, from axial to radial, while maintaining pressure by using an outer mold and a lap roller. A modified process was additionally developed using a round roller rather than the outer mold. In this modification, the round roller can form the shape of all sizes of long neck flange. Using these flexible methodologies, the cost to prepare outer molds and the time to install and remove the molds can be significantly reduced.

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF