• Title/Summary/Keyword: Axial Type Turbine

Search Result 81, Processing Time 0.027 seconds

The Comparison of Output Characteristic by the Electro-magnetic Structure Modification of the Axial Flux Type Permanent Magnet Synchronous Generator (종축 자속형 영구자석 동기 발전기의 전자기적 구조 변경에 따른 출력특성 비교)

  • Jung, Tae-Uk;Bae, Byung-Duk;Kim, Hoe-Cheon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • Generally, the structure without the stator core Axial Field Permanent Magnet (AFPM) generator was simple and there was nearly no cogging toque. And because it had the wide driving rate area, it had been being mainly used in the small wind power generation system. However, AFPM generator with non-slotted stator can't generate high voltage at low wind speed due to long air-gap. It is the reason of output efficiency drop. Therefore, in this paper, the AFPM synchronous generator with internal rotor and dual slotted stators for the small wind turbine is studied, and deal with a cogging torque minimization through the determination of optimum pole-arc ratio.

A Curvic-Coupling Development for the Turbopump Application (터보펌프용 커빅커플링의 개발)

  • Jeong, Eun-Hwan;Yoon, Suk-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.22-25
    • /
    • 2009
  • Development of a curvic-coupling was presented in this paper. The research covers design, structural analysis, hot-temperature-torsion-test, curvic-coupling applied proto-type turbine disk manufacturing, and assembly test of a curvic-coupling rotor system for the turbopump application. Curvic-coupling was designed based on the Gleason-standard-tooth shape. The load capability of the designed curvic coupling was validated by the structural analysis and hot-temperature-torsion-test. A proto-type turbine disk which had adopted designed curvic-coupling was manufactured, assembled and tested to reveal that shaft-disk assembly run-outs in axial and radial directions were much smaller than the design requirements. The development will be finalized after spin test of shaft-disk assembly in near future.

  • PDF

An Experimental Study of Surface Pressure on a Turbine Blade in Partial Admission (분사영역과 터빈익형 위치에 따른 표면압 변화에 관한 실험적 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.735-743
    • /
    • 2011
  • In this study, the distribution of surface pressure was measured in a steady state on a turbine blade which was moved the injected region and receded the stagnation region using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The surface pressures on the blade were measured at three different nozzle angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the low solidity caused the low pressure on the blade suction surface at entering region and the reverse rotating force was generated at the low nozzle angle. The positive incidence also made the pressure lower on the suction surface at entering region.

An Experimental Study of the Performance on a Rotating Turbine with Various incidences (터빈입사각에 따른 회전하는 터빈의 성능에 관한 실험적 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.94-102
    • /
    • 2004
  • An experimental study on a rotating turbine is conducted with various incidence angles in order to find an optimum incidence angle. The incidence angle is an important design parameter in turbine blade design. however, most of experiments were conducted in a linear or annual cascade row. The suggested incidence angles from the experiments conducted in cascade rows could be unsuitable as a design parameter in the design of rotating parts. In this study, various incidence angles are applied and the turbine performance is measured in a rotating state. Experimental results show that the incidence on the rotor has a great influence on the turbine efficiency. The range of applicable incidence becomes narrow when the turbine operates at high input power. In the case of the tested rotor, the optimum incidence is about $-12^{\circ}$.

Finite Element Analysis for the Contact Behavior in Double-Type Mechanical Face Seals Used for Small Hydro Power Turbine (소수력 터빈용 복수 기계평면시일의 접촉거동에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kang, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.201-208
    • /
    • 2005
  • This paper presents the FEM analysis on the contact behavior characteristics of mechanical face seals in a small hydro-power turbine. Especially, the axial displacement and contact normal stress between a seal ring and a seal seat of a primary sealing unit have been analyzed as functions of rotating speed of a hydro-turbine, sealing gap, water and cooling fluid temperature. Those are strongly related to a leakage of water and wear between a seal ring and a seal seat. The FEM computed results present that the rotating speed of a hydro-turbine may be kept less than 800 rpm, and the sealing gap in a primary sealing unit is restricted $0.5\~5$. The coolant temperature in which is most influential parameter to the contact behaviors of a sealing unit may be kept less than $15^{\circ}C$ for a safe operation of a sealing unit without a leakage and wear.

A Study on Unsteady Flow Characteristics in a Industrial Mixer with Hydrofoil Types Impeller by PIV (PIV에 의한 산업용 교반기내 Hydrofoil 임펠러 형태에 따른 비정상 유동특성에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Kim, Jin-Gu;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.863-868
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers arc hydrofoil turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz, The maximum velocity around neo-hydrofoil impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high-viscosity materials.

  • PDF

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

A Study on the Uncertainty Propagation of Measured Parameters on the Turbine Performance Test (터빈성능시험에서 측정변수의 불확도 파급에 관한 연구)

  • Kim,Eun-Jong;Jo,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.107-114
    • /
    • 2003
  • The effect of uncertainties caused by measured parameters, which are propagated to the uncertainty of total-to-total efficiency, are analyzed from a turbine performance test. The degree of reaction is 0.373 at the mean radius on a tested 3-D axial type turbine, and the performance test is conducted at the low pressure and cold temperature status. The uncertainty of turbine inlet and exit total pressure shows the strong propagation effect to the uncertainty of total-to-total efficiency. This means that a high precision pressure measuring system is required to reduce the uncertainty propagated by the pressure. In the uncertainty portion of each measured parameters to the uncertainty of total- to-total efficiency, the uncertainty by torque is the highest and the uncertainty by RPM is the lowest. In case of the total pressure, the effect of the uncertainty by torque is increased with the increasing RPM. The uncertainty of total pressure at the turbine exit is more important than that at the turbine exit.

Effect of a Turbo-Expander for Regeneration in the Expansion Process (팽창과정에서의 터보엑스펜더 영향에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.157-160
    • /
    • 2006
  • A turbo-expander is developed for the regeneration in the expansion process. The turbo-expander operates in the partial admission and supersonic flow, and an axial-type single stage turbine is applied to the turbo-expander. Its outer diameter is 82mm and the operating gas is R134a. A 15kW reciprocating compressor is applied in this experiment and the turbo-expander is installed in the expansion process instead of the commonly using expansion valve. Two supersonic nozzles are applied for the expansion process. The high speed of R 134a after passing the supersonic nozzles gives the impulse force to the turbo-expander and some powers are generated on this process. A generator is installed at the end of the turbo-expander shaft. The generating output power from the turbo-expander is controlled by the power controller. Pressures and temperatures are measured on the lines for the performance investigation. More than 600W/(kg/sec) are generated in this experiment.

  • PDF

Characteristics Analysis of a Direct-Drive AFPM Generator for 5kW Wind Turbine (직접 구동용 5kW AFPM 풍력 발전기 특성 해석)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.773-774
    • /
    • 2006
  • Nowadays, the global interests are concentrated on the preserving of the clean environment, and the diminishing of the dependence on the fossil energy, and among the possible alternative energies, the wind turbine generating system is considered to be the best suited to produce high efficiency energy, without affecting the natural environment. The permanent magnet generators were been used for the wind power generating, for long time, with continuous efforts to improve the generating efficiency. And the latest trend on it is to develop an AFPM(Axial Flux Permanent Magnet)type, which is composed in the structure of rotor and stator shaped in the disc forms, and the direction of the flux at the air gap runs in parallel to the shaft. This thesis is on the study concerning with the analysis of the characteristics of the 5 kW at 300rpm direct drive AFPM generator which is suitable for the small scale wind turbine generating system. In it, the Electro-magnetically Coreless AFPM was been analyzed, the prototype generators been made, concentrated on interpreting the characteristics of the power output, and verifying it through the theoretical study and practical tests.

  • PDF