• Title/Summary/Keyword: Axial Rotation

Search Result 299, Processing Time 0.027 seconds

A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner (로터리 버너의 축류형 팬 주위 유동특성 연구)

  • Ko, D.G.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

Axial Turbine Performance Evaluation in a Rotating Facility (회전 환경에서의 축류 터빈 성능평가)

  • Yoon, Yong-Sang;Song, Seung-Jin;Kim, Hong-Won;Cho, Sung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.46-52
    • /
    • 2001
  • This paper describes a turbine test program conducted at Seoul National University(SNU). To measure blades' aerodynamic performance, either linear(2-Dimensional) or annular(3-Dimensional) cascades are often used. However, neither cascade can consider effects such as those due to rotation or rotor-stator interaction. Therefore, a rotating test facility for axial turbines has been designed and built at SNU, and its description is given in this paper. The results from an axial turbine performance test are presented. At the design point, the measured efficiency agrees with the efficiency predicted by a meanline analysis. At off design points, however, the measured and predicted efficiencies diverge. The most likely cause is hypothesized to be the inaccuracy of correlations used in the meanline analysis at off design points.

  • PDF

Effect of Axial Loads on Natural Frequencies of Timoshenko Beam (축하중이 티모센코 보의 고유진동수에 미치는 영향)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.580-586
    • /
    • 2011
  • This paper addresses the effect of transverse shear deformation and rotary inertia on the natural frequency of beams under axial loads. It has been reported in the author's paper using a finite element analysis that the Timoshenko effect in a rotating disk deceases and then increases again with increasing rotation speed. To validate the phenomenon, the simply-supported beams under uniform tension are selected in this study since they have exact solutions in vibration problem. The results show that the axial tension in beams would not make the Timoshenko effect decrease monotonically but could make the effect increase again unlike the results reported in the other studies for beams.

Experimental Research for Performance and Noise of Small Axial Fan

  • Ito, Takahiro;Minorikawa, Gaku;Fan, Qinyin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.136-146
    • /
    • 2009
  • Small axial fans have become widely used as cooling devices in recent years. Because of their increasing importance, studies have been conducted on ways to improve the performance and reduce the noise of such fans. In this report, a small axial fan with a diameter of 85 mm (a type popularity used in personal computer or workstation) was selected for further examination. The influence on aerodynamic performance and noise of such frame design parameters as blade tip clearance results in a decrease of discrete frequency noise and an increase of broad-spectrum noise. As for the most suitable design refinement in terms of fan efficiency, we found that the treatment of outlet corner roundness and altering spoke skew to the direction counter to that of fan rotation was effective.

Bearing Performance Evaluation Based on Rigid Body Dynamic Analysis Considering Rotation and Loads Over Time (시간에 따른 회전 및 하중을 고려한 강체 동역학 해석에 기반한 베어링 성능 평가)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2023
  • Bearing is a mechanical component that supports loads and transmits rotation. As the application of high-value-added products such as semiconductors, aviation, and robots have recently become diverse and more precise, an accurate bearing performance prediction and evaluation technology is required. Bearing performance evaluation can be divided into evaluations based on bearing theory and on numerical analysis. An evaluation based on numerical analysis is a technique that has been highlighted because the problems that remained unsolved owing to time problems can be solved through recent developments in computers. However, current studies have the disadvantage of not considering the essential changes over time and bearing rotation. In this study, bearing performance evaluation based on rigid body dynamic analysis considering rotation and load over time is performed. Rigid body dynamic analysis is performed for deep groove ball bearing to calculate the load applied by the ball. The reliability of the analysis is verified by comparing it with the results calculated using bearing theory. In addition, rigid body dynamic analysis is performed for automotive wheel bearings to calculate the contact angle and load applied by the ball for cases where axial load and radial load are applied, respectively. The effect of rotation and load over time is evaluated from these results.

Study on the Strength of Limit Axial Force and Accumulated Limit Axial Force of Concrete Filled Square Tube Columns (콘크리트 충전 각형강관 기둥부재의 한계축력 및 누적한계축력에 관한 연구)

  • Seo, Seong Yeon;Jung, Jin Ahn;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.605-615
    • /
    • 2005
  • Experimental and analytical work was conducted to investigate the relations of axial force and deformational capacity of concrete-filled square steel tube columns. The test series consisting of 36 columns were tested under the constant axial load and horizontal cyclic load. The axial force of the columns that resisted under the cyclic lateral load was defined as a certified strength of limit axial force. The analytical model was defined as a cantilever beam-column. The axial force of the beam-column that resisted under the cyclic lateral load was defined as an accumulated certified strength of limit axial force. The purpose of this study is to investigate the certified strength of limit axial force of concrete-filled steel tube beam-columns, which were subjected to both axial and lateral load condition corresponding to a given constant rotation angle. Another purpose of this study is to discuss the comparison of the certified strength of limit axial force of concrete and the accumulated certified strength of limit axial force of concrete-filled steel tube columns.

Condylar positioning changes following unilateral sagittal split ramus osteotomy in patients with mandibular prognathism

  • Kim, Myung-In;Kim, Jun-Hwa;Jung, Seunggon;Park, Hong-Ju;Oh, Hee-Kyun;Ryu, Sun-Youl;Kook, Min-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.36.1-36.7
    • /
    • 2015
  • Background: This study was performed to evaluate three-dimensional positional change of the condyle using three-dimensional computed tomography (3D-CT) following unilateral sagittal split ramus osteotomy (USSRO) in patients with mandibular prognathism. Methods: This study examined two patients exhibiting skeletal class III malocclusion with facial asymmetry who underwent USSRO for a mandibular setback. 3D-CT was performed before surgery, immediately after surgery, and 6 months postoperatively. After creating 3D-CT images by using the In-vivo $5^{TM}$ program, the axial plane, coronal plane, and sagittal plane were configured. Three-dimensional positional changes from each plane to the condyle, axial condylar head axis angle (AHA), axial condylar head position (AHP), frontal condylar head axis angle (FHA), frontal condylar head position (FHP), sagittal condylar head axis angle (SHA), and sagittal condylar head position (SHP) of the two patients were measured before surgery, immediately after surgery, and 6 months postoperatively. Results: In the first patient, medial rotation of the operated condyle in AHA and anterior rotation in SHA were observed. There were no significant changes after surgery in AHP, FHP, and SHP after surgery. In the second patient, medial rotation of the operated condyle in AHA and lateral rotation of the operated condyle in FHA were observed. There were no significant changes in AHP, FHP, and SHP postoperatively. This indicates that in USSRO, postoperative movement of the condylar head is insignificant; however, medial rotation of the condylar head is possible. Although three-dimensional changes were observed, these were not clinically significant. Conclusions: The results of this study suggest that although three-dimensional changes in condylar head position are observed in patients post SSRO, there are no significant changes that would clinically affect the patient.

Velocity Field Measurement of Flow Around an Axial Fan Using a Phase Averaged 2-Frame PTV Technique (위상평균 PTV 기법을 이용한 축류 홴 주위 유동의 속도장 측정 연구)

  • Choi, Jay-Ho;Kim, Hyoung-Bum;Lee, Sang-Joon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.114-123
    • /
    • 2000
  • The flow structure around a rotating axial-fan was experimentally investigated using a phase averaging velocity field measurement technique. The fan blades were divided into 4 different phases, for which 500 velocity fields were acquired for each phase angle with a 2-frame PTV system. Velocity field measurements were also carried out at two planes parallel to the axis of rotation, with offsets toward the radial direction of the fan. For accurate synchronization of the PTV system with the phase of the axial fan, two synchronization circuits were employed with a photo-detector attached to the rotating shaft. The phase averaged velocity fields show periodic variations with respect to the blade phase. The periodic formation of vortices at the blade tip is also observed in vorticity contour plots. Locations of local maximum turbulence intensities in the axial and radial directions are found to be located in an alternating pattern. These experimental results can be used to validate numerical calculations and to understand the flow characteristics of an axial fan.

Wideband Circularly Polarized Microstrip Array Antennal Adopting Sequential Rotation Method Using Shortened Phase Delay (단축된 위상지연을 사용하는 시퀀셜 로테이션 광대역 원형편파 마이크로스트립 배열 안테나)

  • 양태식;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.628-635
    • /
    • 1999
  • At center frequency of 11.85 GHz, wideband left-handed circularly polarized microstrip array antenna is designed with the method of sequential ratation based on $2\times2$ radiation elements($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$ phase delay). Its return loss, axial ratio bandwidth, radration pattern, and gain are compared with those adopting sequential rotation based on $1\times2$ radiation elements($0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$phase delay). The $8\times8$ array is manufactured and measured. The results show that 10 dB return loss bandwidth is 10.51~12.74GHz(18.82%) which is 1.57 times wider than the case using $1\times2$ sequential rotation method, 3 dB axial ratio bandwidth is 11.43~12.5 GHz(9.03%) which is 1.25 times as wide as that using $1\times2$ sequential rotation method and the antennal gain is 25.4 dB. The results of mesurements are almost similar to those of simulation.

  • PDF

Theoretical axial wall angulation for rotational resistance form in an experimental-fixed partial denture

  • Bowley, John Francis;Kaye, Elizabeth Krall;Garcia, Raul Isidro
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.278-286
    • /
    • 2017
  • PURPOSE. The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS. Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS. Low levels of vertical wall taper, ${\leq}10-degrees$, were needed to resist rotational displacement in all wall height categories; 2-to-6-degrees is generally considered ideal, with 7-to-10-degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION. The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form.