• Title/Summary/Keyword: Axial Pump

Search Result 221, Processing Time 0.024 seconds

Numerical Study on the Variation of Axial Thrust of Rotating Disc with Pump-Out Vane (POV가 부착된 회전 원판의 축추력 변화에 관한 연구)

  • Seong Seong-Mo;Kang Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.230-237
    • /
    • 2006
  • Flows in the cavity with pump out vane are calculated using the CFX-Tascflow CFD code. flow calculations are performed for different values of vane height, numbers, leakage flow rate, and rotational speed. The flow is very complex and three dimensional with strong vortex and leakage flow over the vane. The variations of pressure coefficient and K-factor with these parameters and resulting effects on the thrust and torque are studied. The present study contributes to showing the capability of flow simulation of back cavity with pump-out vane. The calculated results are good enough to be used back cavity design.

A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps (유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구)

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF

A Study on the Driving of Rods in Hydraulic Bent-axis-type Axial Piston Pump Part 1: The Theoretical Analysis of Driving Mechanism (유압 사축식 액셜 피스톤 펌프의 로드 구동에 관한 연구 제1보: 구동 메카니즘의 이론해석)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • Recently, bent-axis-type axial piston pumps driven by rods being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps driven by rods, it is necessary to know characteristics of the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I studied the theoretical driving mechanisms of cylinder block driven by rods through geometric method. I found that the cylinder block was driven by one rod in limited area and the driving area was changed by rod's tilting angle and cylinder block's swivel angle.

System Modeling of a Bi-directional Outlet Variable Swash Plate Type Axial Piston Pump with Two EPPR Valves (두 개의 EPPR 밸브가 적용된 정/역 가변형 사판식 액셜 피스톤 펌프 시스템 모델링)

  • Kim, Yong-Gil;Kim, Soo-Tae;Ham, Young-Bog;Yun, So-Nam;Son, Ho-Yeon
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • This study addresses the modeling of a bi-directional outlet variable swash plate type axial piston pump with two EPPR valves and an analysis of the response characteristics to the angle control of that pump. In this paper, the combination of the EPPR valve and double rod type piston is referred to as the EPPR regulator. The EPPR regulator is compact and inexpensive, and has good responsiveness. Under actual pump operating conditions, because of the various external conditions of the pump, inertia is applied to the swash plate, generating the tilting torque. Also, the tilting torque can delay or shorten the response characteristics of the regulator. So we validated them through the analysis using SimulationX and these results allow users to freely integrate the EPPR regulator into the desired system.

A Rotating Flux Pump Employing a Magnetic Circuit and a Stabilized Coated Conductor HTS Stator

  • Jiang, Z.;Bumby, C.W.;Badcock, R.A.;Long, N.J.;Sung, H.J.;Park, M.
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.239-243
    • /
    • 2016
  • High temperature superconductor (HTS) magnet systems usually employ metal current leads which bridge between the cryogenic environment and room temperature. Such current leads are the dominant heat load for these magnet systems due to a combination of electrical resistance and heat conduction. HTS flux pumps enable large currents to be injected into a HTS magnet circuit without this heat load. We present results from an axial-type HTS mechanically rotating flux pump which employs a ferromagnetic circuit and a Cu-stabilized coated conductor (CC) HTS stator. We show the device can be described by a simple circuit model which was previously used to describe barrel-type flux pumps, where the model comprises an internal resistance due to dynamic resistance and a DC voltage source. Unlike previously reported devices, we show the internal resistance and DC voltage in the flux pump are not exactly proportional to frequency, and we ascribe this to the presence of eddy currents. We also show that this axial-type flux pump has superior current injection capability over barrel-type flux pumps which do not incorporate a magnetic circuit.

Modeling and Robust Controller Design of a Swash Plate for Swash Plate Type Variable Displacement Axial Piston Pump (가변용량형 사판식 액셜피스톤 펌프의 모델링 및 사판 강인 제어기 설계)

  • Park, Sung-Hwan;Park, Yong-Ho;Lee, Ji-Min;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.75-81
    • /
    • 2008
  • A robust controller is proposed for regulating effectively the pressure of control cylinder of swash plate type variable displacement axial piston pump. In order to design a precise and robust pressure control system, a mathematical model for swash plate control system is identified by the signal compression method. Based on the identified mathematical model, an $H_{\infty}$ robust swash plate controller is designed which is robust to the variation of the load pressure. The precise and robust swash plate control characteristics are verified by experiments.

Rotating Choke and Choked Surge in an Axial Pump Impeller

  • Watanabe, Toshifumi;Sato, Hideyoshi;Henmi, Yasuhiko;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.232-238
    • /
    • 2009
  • Unlike usual turbopump inducers, the axial flow pump tested operates very stably at design flow rate without rotating cavitation nor cavitation surge. Flow visualization suggests that this is because the tip cavity smoothly extends into the flow passage without the interaction with the leading edge of the next blade. However, at low flow rate and low cavitation number, choked surge and rotating choke were observed. Their correlation with the performance curve under cavitation is discussed and their instantaneous flow fields are shown.

CFD Analysis on Shoe and Swash-Plate of Axial Piston Pump (사판식 유압펌프의 피스톤 슈 간극의 유동해석)

  • Kim, In-Soo;Lee, Kyong-Hoon;Bae, Jae-Man
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.156-158
    • /
    • 2008
  • Along the various gap distance between shoe and swash plate and pocket diameter, lifting force of piston shoe during the compressing stage was calculated. The flow in piston, orifice, shoe, and back space was considered to be 2-dimension axisymmetric and analysed by Fluent, a commercial CFD Software. The wall boundary condition was given as nonslip and adiabatic, while the change in fluid viscosity was considered as linear along temperature. Calculated lifting force and oil leakage of shoe was used in the design of a pump to confirm the shape of the shoe.

  • PDF

유압펌프에서 발생되는 고주파 유량맥동의 고응답 계측

  • 이상기;김도태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.267-272
    • /
    • 1995
  • The paper describes an approach for measuring flow ripple generated by oil hydraulic axial piston pumps. Flow ripple has periodic waveforms due to the cyclic nature of a pump's operation, and interacts with the connected hydraulic systems such as pipes and components to produce a pressure ripple, also known as fluid-borne noise. It is indispensable to measure a flow ripple because increasing of vibration and noise caused by a flow ripple has become a point to be considered and has need of solving these problems. The measurement of flow ripple with high frequencies from oil hydraulic axial piston pumps is msde by using the remote instantaneous flow rate measurement method. As a result, the reverse flow through the relief groove in valve plate has an important effect upon a flow ripple generated by a pumps.

  • PDF

Study on the Tilting pad Mechanism of Swash Plate Type Axial Piston Motor (사판식 액셜 피스톤 모터의 틸팅 패드의 매카니즘에 대한 연구)

  • Kim, Jin-Ook;Lee, Chun-Tae;Kim, Jong-Kyum;Hur, Nam-Su;Lee, Jin-Keol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.78-88
    • /
    • 1991
  • The existing axial piston pump/motors of swash plate type rapidly drop efficiency in high speed region in comparison with low speed. This is the reason why the pump/motors were designed only in a view point of power supply. But, in this paper, the motor which was optimally designed on power supply load capacitancy, flow loss volume, axial stiffness and tiliting stiffness keeps up high efficiency in high speed region and in high pressure resion too.

  • PDF