Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.239

A Rotating Flux Pump Employing a Magnetic Circuit and a Stabilized Coated Conductor HTS Stator  

Jiang, Z. (Robinson Research Institute, Victoria University of Wellington)
Bumby, C.W. (Robinson Research Institute, Victoria University of Wellington)
Badcock, R.A. (Robinson Research Institute, Victoria University of Wellington)
Long, N.J. (Robinson Research Institute, Victoria University of Wellington)
Sung, H.J. (Department of Electrical Engineering, Changwon National University)
Park, M. (Department of Electrical Engineering, Changwon National University)
Publication Information
Abstract
High temperature superconductor (HTS) magnet systems usually employ metal current leads which bridge between the cryogenic environment and room temperature. Such current leads are the dominant heat load for these magnet systems due to a combination of electrical resistance and heat conduction. HTS flux pumps enable large currents to be injected into a HTS magnet circuit without this heat load. We present results from an axial-type HTS mechanically rotating flux pump which employs a ferromagnetic circuit and a Cu-stabilized coated conductor (CC) HTS stator. We show the device can be described by a simple circuit model which was previously used to describe barrel-type flux pumps, where the model comprises an internal resistance due to dynamic resistance and a DC voltage source. Unlike previously reported devices, we show the internal resistance and DC voltage in the flux pump are not exactly proportional to frequency, and we ascribe this to the presence of eddy currents. We also show that this axial-type flux pump has superior current injection capability over barrel-type flux pumps which do not incorporate a magnetic circuit.
Keywords
HTS flux pump; coated conductors; dynamic resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. J. M. van de Klundert, and H. H. J. ten Kate, Cryogenics 21, 195 (1981).   DOI
2 S. Lee, W. S. Kim, Y. Kim, J. Y. Lee, S. H. Park, J. K. Lee, G. W. Hong, S. S. Kim, Y. J. Hwang, and K. Choi, IEEE Trans. Appl. Supercond. 26, 0606104 (2016).
3 C. Hoffmann, D. Pooke, and A. D. Caplin, IEEE Trans. Appl. Supercond. 21, 1638 (2011).
4 Z. Jiang, K. Hamilton, N. Amemiya, R. A. Badcock, and C. W. Bumby, Appl. Phys. Lett. 105, 112601 (2014).   DOI
5 T. A. Coombs, J. F. Fagnard, and K. Matsuda, IEEE Trans. Appl. Supercond. 24, 8201005 (2014).
6 Z. Jiang, C. W. Bumby, R. A. Badcock, H. J. Sung, N. J. Long, and N. Amemiya, Supercond. Sci. Technol. 28, 115008 (2015).   DOI
7 Z. Jiang, C. W. Bumby, R. A. Badcock, and H. J. Sung, IEEE Trans. Appl. Supercond. 26, 4900706 (2016).
8 C. W. Bumby, Z. Jiang, J. E. Storey, A. E. Pantoja, and R. A. Badcock, Appl. Phys. Lett. 108, 122601 (2016).   DOI
9 K. Ogasawara, K. Yasukochi, S. Nose, and H. Sekizawa, Cryogenics 16, 33 (1976).   DOI
10 M. P. Oomen, J. Rieger, M. Leghissa, B. ten Haken, and H. H. J. ten Kate, Supercond. Sci. Technol. 12, 382 (1999).   DOI