• Title/Summary/Keyword: Axial Paths

Search Result 42, Processing Time 0.026 seconds

A Numerical Analysis of Load Transfer Behavior of Axially Loaded Piles (축하중 재하말뚝의 하중전이 거동에 대한 수치해석)

  • 오세붕;최용규
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-106
    • /
    • 1998
  • The behavior of axially loaded pile was analyzed by two methodologies: one is the finite difference method using load transfer curves recommended by API(1993) , and the other is the numerical analysis using the FLAC program. From both analyses, load-displacement curves and load distributions along the depth were evaluated appropriately for the measured. The analysis using the FLAC could capture the nonlinearity of load-displacement curve even for unloading and reloading cases, since the unloaded stress paths of fill layer elements occurred on the failure envelop. Futhermore, the measured load transfer curves were compared with the API recommendations and with the calculations obtained front the results of the FLAC analysis for the interpretation of the transfer behavior between the soil and the pile under axial loadings. It was concluded that the atrial behavior of open ended piles at Pusan could be evaluated by both the finite difference analysis using API load transfer curves and the numerical analysis using FLAC.

  • PDF

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Public Transport Network Connectivity using GIS-based Space Syntax (GIS 기반 Space Syntax를 이용한 대중교통 접근성)

  • Jun, Chul-Min
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.25-33
    • /
    • 2007
  • The local governments of major cities in Korea are giving focus on public transportation to reduce congestion and improve accessibility in city areas. In this regards, the proper measurement of accessibility is now a key policy requirement for reorganizing the public transport network. Public transport routing problems, however, are considered to be highly complicated since a multi-mode travel generates different combinations of accessibility. While most of the previous research efforts on measuring transport accessibility are found at zone-levels, an alternative approach at a finer scale such as bus links and stops is presented in this study. We proposes a method to compute the optimal route choice of origin-destination pairs and measure the accessibility of the chosen modes combination based on topological configuration. The genetic algorithm is used for the computation of the journey paths, whereas the space syntax theory is used for the accessibility. This study used node-link data in GIS instead of axial lines which are manually drawn in space syntax. The resulting accessibilities of bus stops are calibrated by O-D survey data and the proposed process is tested on a CBD of Seoul.

  • PDF

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

Three-dimensional Behavior and Strength Characteristics of Cubical Hal-dening Materials. (입방체경화재료의 삼차원거동 및 강도특성)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.19-28
    • /
    • 1989
  • This study has been carried out as a fundamental course for the analysis of the constitutive- equation for the materials like sands being hardened during Ehear. For this aim, experimentall tests with variable stress paths for the concrete material are performed using the cubical multi- axial test in which the three principle stresses are arbitrarily controlled. Stress-strain behaviors. and strength characteristics are suggested in octahedral planes. Various tests such as HC, CTC, . TC, 55 are performed. The main results summarized are as follows; 1. The order of strength from the largest to the smallest is CTC, TC, SS, and TE test. 2. The octahedral Ehear strength of concrete specimens is dependent upon the stress path(8) 3. There is a direct relation between strength and confining pressure. 4. The ultimate envelopes in the octahedral planes are non-circular-cone shaped. 5. Any ultimate criteria used to predict the strength behavior of concrete must include thin effect of the tensile stresses.

  • PDF

Thermal Performance of a Small-scale Loop Heat Pipe for Terrestrial Application (지상용 소형 루프히트파이프 성능에 관한 연구)

  • Chung, Won-Bok;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1052-1057
    • /
    • 2004
  • A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm ${\times}$ 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) ${\times}$ 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of $100^{\circ}C$. The minimum thermal load of 10 W (0.8 W/cm2) and maximum thermal load of 80 W (6.5 W/cm2) were achieved using methanol as working fluid with the condenser temperature of $20^{\circ}C$ with horizontal position.

  • PDF

Experimental Study on the Thermal Performance of a Small-scale Loop Heat Pipe with Polypropylene Wick

  • Boo Joon Hong;Chung Won Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1052-1061
    • /
    • 2005
  • A small-scale loop heat pipe (LHP) with polypropylene wick was fabricated and tested for investigation of its thermal performance. The container and tubing of the system were made of stainless steel and several working fluids were tested including methanol, ethanol, and acetone. The heating area was $35\;mm\;{\times}\;35\;mm$ and nine axial grooves were provided in the evaporator to provide vapor passages. The pore size of the polypropylene wick inside the evaporator was varied from $0.5\; {\mu}m\;to\;25\;{\mu}m.$ The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The size of condenser was $40\;mm\;(W)\;{\times}\;50\;mm\;(L)$ in which ten coolant paths were provided. Start-up characteristics as well as steady-state performance was analyzed and discussed. The minimum thermal load of $10\;W\;(0.8\;W\;/cm^{2})$ and maximum thermal load of $80\;W\;(6.5\;W\;/cm^{2})$ were achieved using methanol as working fluid with the condenser temperature of $20^{\circ}C$ with horizontal position.

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Nonlinear Analysis of Reinforced and Prestressed Concrete Shells Using Layered Elements with Drilling DOF

  • Kim Tae-Hoon;Choi Jung-Ho;Kim Woon-Hak;Shin Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.645-654
    • /
    • 2005
  • This paper presents a nonlinear finite element procedure for the analysis of reinforced and prestressed concrete shells using the four-node quadrilateral flat shell element with drilling rotational stiffness. A layered approach is used to discretize, through the thickness, the behavior of concrete, reinforcing bars and tendons. Using the smeared-crack method, cracked concrete is treated as an orthotropic nonlinear material. The steel reinforcement and tendon are assumed to be in a uni-axial stress state and to be smeared in a layer. The constitutive models, which cover the loading, unloading, and reloading paths, and the developed finite element procedure predicts with reasonable accuracy the behavior of reinforced and prestressed concrete shells subjected to different types of loading. The proposed numerical method fur nonlinear analysis of reinforced and prestressed concrete shells is verified by comparison with reliable experimental results.

Network Planning on the Open Spaces in Geumho-dong, Seoul (서울 금호동 오픈스페이스 네트워크 계획)

  • Kang, Yon-Ju;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.51-62
    • /
    • 2012
  • Geumho-dong, Seoul, a redeveloped residential area, is located in the foothills of Mt. Eungbong. The geographical undulation, the composition of a large apartment complex, and the partial implementation of the redevelopment project have caused the severe physical and social disconnections in this area. In order to recover functioning in the disconnected community, this study pays attention to the regeneration of the open spaces as an everyday place and in the form a network system among those open spaces. Various types of the open spaces are classified into points or faces, 'bases' and linear 'paths' analyze the network status. More than half of the open space have connecting-distance of 500m or more. Furthermore, many areas are not even included in the service-area of the open spaces. Analysis of the connectivity and integration value using the axial map has carried out to check weak linkages and to choose the sections where additional bases are required. In addition, to improve the quality of the bases and the paths, a field investigation is conducted and problems are diagnosed. The network planning of the open spaces in Geumho-dong is established, ensuring the quality and quantity of bases and paths. The plan includes the construction of an additional major base in the central area and six secondary bases in other parts, and comes up with ways to improve the environment of underdeveloped secondary bases. In the neighborhood parks at Mt. Daehyun areas, the major path are added, and the environment of the paths is improved in certain areas. Because of the network planning, the connecting-distances between bases are reduced significantly, the connectivity and integration value of the area are increased, and the service areas of the open spaces cover the whole area properly. Although this study has some limitations such as the needs for the legal and institutional supports and difficulties of a quantitative indexing process, its significance lies in the suggestion of a more reasonable and practical plan for the overall network system by defining complex types of open spaces simply and clearly and by examining the organic relationships quantitatively and qualitatively.