• Title/Summary/Keyword: Axial Gap

Search Result 253, Processing Time 0.033 seconds

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

A Numerical Analysis on the Nozzle-Rotor of a 3-D Supersonic Turbine (3차원 초음속 터빈의 노즐-로터 상호작용에 관한 수치적 연구)

  • Yun Won-Kun;Shin Bong-Gun;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.413-422
    • /
    • 2005
  • In this paper, numerical results for 3-D supersonic turbine flow have been firstly compared with the experimental results to verify results computed by $Fine^{TM}/Turbo$. It was found that $Fine^{TM}/Turbo$ can accurately predict flow characteristics within supersonic turbine. Next, an grid system for 3D turbine flow was optimized selected through grid independency test. Finally the effect of axial gap between rotor and nozzle and chamfer angle of blade edge on the flow characteristics within 3-D supersonic turbine was analyzed with Frozen Rotor method.

  • PDF

A Study on Oil Consumption Related with the Piston Ring Pack with Thinner Ring Width and Lower Ring Tension (박폭 저장력 피스톤 링 팩에 대한 오일소모 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.311-317
    • /
    • 2009
  • To satisfy the more severe emission regulation and the demand of higher fuel economy in near future, the combustion pressure and power output of engines is going to be higher. In order to get the reduction of engine emission and the higher power, it is needed the reduction of the tension and width of ring pack. The lower tension ring and the thinner width ring can bring not only the friction reduction between the ring and liner during engine running, but also the adjustment of the blow-by gas and oil consumption by changing in the pressure in the crevice volume and the axial motion of rings togethe with the adjustment of the inter-ring crevice volumes. In this study, by using a developed basic computer proglram that predicts the blow-by gas and oil consumption of engines, it is to be examined how satisfying the level of the blow-by gas and oil consumption as being installed the piston ring pack with thinner width ring and lower tension ring.

SINGLE TOOTH IMPLANT RESTORATION USING COMBINATION IMPLANT CROWN : A CASE REPORT (콤비네이션 임프란트 크라운(Combination Implant Crown)을 이용한 단일치아의 임프란트 보철수복증례)

  • Kim, Rae-Gyoung;Song, Eon-Hee;Choi, Byeong-Gap;Kim, Hyoun-Chull;Ahn, Hyun-Jeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.375-382
    • /
    • 1999
  • The purpose of this article is to present the clinical and laboratory procedures for single tooth restoration using 'Combination Implant Crown'. It is cemented on implant abutment and that abutment is screw-retained over implant body. This type of implant restorations has the advantages of cement-retained restoration while being antirotational and retrievable. And, more esthetic and functional result can be achieved by minimizing the size of access hole. The results were as follows : 1. Preparation of abutment below the cuff line should be avoided 2. Axial reduction of implant abutment should not be excessive because it may weaken the abutment 3. More esthetical and functional occlusal surface was achieved with a minimal access hole which is slightly larger than the diameter of hex driver to enable future total retrievability. 4. Combination Implant Crown has the advantages of both the cement-retained and screw-retained type implant restoration. 5. Cementation between implant crown and abutment reduces screw loosening through even force distribution

  • PDF

COMPUTATIONAL MODELING AND SIMULATION OF METAL PLASMA GENERATION BETWEEN CYLINDRICAL ELECTRODES USING PULSED POWER (펄스파워를 이용한 실린더형 전극간 금속 플라즈마 생성현상의 전산유동해석)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.68-74
    • /
    • 2014
  • This computational study features the transient compressible and inviscid flow analysis on a metallic plasma discharge from the opposing composite electrodes which is subjected to pulsed electric power. The computations have been performed using the flux corrected transport algorithm on the axisymmetric two-dimensional domain of electrode gap and outer space along with the calculation of plasma compositions and thermophysical properties such as plasma electrical conductivity. The mass ablation from aluminum electrode surfaces are modeled with radiative flux from plasma column experiencing intense Joule heating. The computational results shows the highly ionized and highly under-expanded supersonic plasma discharge with strong shock structure of Mach disk and blast wave propagation, which is very similar to muzzle blast or axial plasma jet flows. Also, the geometrical effects of composite electrodes are investigated to compare the amount of mass ablation and penetration depth of plasma discharge.

Probabilistic Evaluation of RV Integrity Under Pressurized Thermal Shock (가압열충격을 받는 원자로용기의 확률론적 건전성 평가)

  • Kim, Jong-min;Bae, Jae-hyun;Sohn, Gap-heon;Yoon, Ki-seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • The probabilistic fracture analysis is used to determine the effects of uncertainties involved in material properties, location and size of flaws, etc, which can not be addressed using a deterministic approach. In this paper the probabilistic fracture analysis is applied for evaluating the RV(Reactor Vessel) under PTS(Pressurised Thermal Shock). A semi-elliptical axial crack is assumed in the inside surface of RV. The selected random parameters are initial crack depth, neutron fluence, chemical composition of material (copper, nickel and phosphorous) and $RT_{NDT}$. The deterministically calculated $K_I$ and crack tip temperature are used for the probabilistic calculation. Using Monte Carlo simulation, the crack initiation probability for fixed flaw and PNNL(Pacific Northwest National Laboratory) flaw distribution is calculated. As the results show initiation probability of fixed flaw is much higher than that of PNNL distribution, the postulated crack sizes of 1/10t in this paper and 1/4t of ASME are evaluated to be very conservative.

  • PDF

Temperature effect on spherical Couette flow of Oldroyd-B fluid

  • Hassan, A. Abu-El;Zidan, M.;Moussa, M.M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annular region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gradient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected. An approximate analytical solution of the energy and momentum equations is obtained through the expansion of the dynamical fields in power series of Nahme number. The analysis show that, the temperature variation due to the external source appears in the zero order solution and its effect extends to the fluid velocity distribution up to present second order. Viscous heating contributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and a second order stream function fields has been appeared. Moreover, at higher orders the temperature distribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of positive and negative values depend on their positions in the domain region between the two spheres.

Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding Machine (내면연삭기 고속 주축용 원추형 자기베어링시스템 설계)

  • Park, Jong-Gwon;No, Seung-Guk;Gyeong, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.213-219
    • /
    • 2002
  • A cone-shaped active magnetic healing spindle system for high speed internal grinding with built-in motor that has 7.5kW power and maximum rotational speed of 50,000 rpm is designed and built. Using cone-shaped AMB(Active Magnetic Bearing) system, the axial rotor dick and magnets of conventional 5-axis actuating design can be eliminated. so this concept of design provides a simple magnetic bearing system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and a de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed crone-shaped AMB spindle system is built and constructed with a digital control system, which has TMS320C6702 DSP, 16 bit AD/DA, switching power amplifier and gap sensors. As the AMB system provides high damping ratio eliminating overshoot and resonance speed, this spindle runs up to 40,000 rpm stably with about 5${\mu}{\textrm}{m}$ of runout.

A Study on Contact Characteristics of Mechanical Face Seals for a Hydro-power Turbine Depending on the Rubbing Surface Geometry (소수력 터빈용 기계평면시일의 표면마찰형상에 따른 접촉특성 해석에관한 연구)

  • Kim Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.119-126
    • /
    • 2006
  • In this paper, the contact behavior characteristics of a primary sealing components such as a seal ring and a seal seat has been presented for a small hydro-power turbine. Using the non-linear FEM analysis, the maximum temperature, the axial displacement, radial differences between a seal ring and a seal seat, and maximum contact normal stress have been analyzed for three optimized sealing profiles in which are designed based on the FEM analysis and Taguchi's experimental method. The three primary sealing profiles between a seal ring and a seal seat are strongly related to a leakage of a water for a hydro-power turbine and wear of a primary sealing component. The computed results show that the contact rubbing area between a seal ring and a seal seat is very important for reducing a friction heating and wear in a sealing gap, and increasing a contact normal stress in primary sealing components. Based on the FEM computation, models II and III in which have a small rubbing surface of seal rings show low dilatation of primary sealing components, and high normal contact stress between a seal ring and a seal seat. Thus, the FEM computed results recommend a short contacting width of a primary sealing component for reducing a leakage and thermal distortions, and expanding a seal life. This means that a conventional primary sealing component may be switched to a reduced sealing face of seal rings.

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipeline (관로를 통하여 수송되는 원통형 캡슐의 거동에 대하여 캡슐밀도의 균일성이 미치는 영향)

  • 이경훈
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.97-105
    • /
    • 1993
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect of capsule density variation in the axial direction was studied both experimentally and anaytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions, In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the stability index. The experiments conducted prover that the stability index is a valid criterion for explaining and correlating data on the capsule motion and the capsule density uniformity.

  • PDF