• Title/Summary/Keyword: Axial Flow fan

Search Result 234, Processing Time 0.024 seconds

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Choi, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.116-121
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room. Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. Noise optimization is obtained from Neural Network which is constructed based on the calculated flow rate and noise spectrum.

  • PDF

Analysis of Wake and Noise of a Fan in Finite Duct (유한관내에서 축류팬 후류 및 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.100-105
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy. and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lawson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

Effect of pitch angle and blade length on an axial flow fan performance (피치각과 날개 길이 변화에 따른 축류팬의 성능 및 소음 특성에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3170-3176
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance and sound characteristics. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed 80 mm, 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment.

Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth (벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Park, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.318.2-318
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate fur cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room, Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. (omitted)

  • PDF

A Study on the Noise Reduction of the Engine Cooing Fan of an Express Bus by Change of Design Parameters (설계파라미터 변경에 의한 고속버스용 엔진 냉각 팬의 저소음화 연구)

  • Jae-Eung OH;You-Yub LEE;Hyun-Jin Sim;Mon-Kab Joe
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.333.1-333
    • /
    • 2002
  • This paper suggests the noise reduction method of the engine cooling fan. It was estimated the fannoise contribution at the engine room and identified the noise source at the rotating fan by sound intensity method, first. And it has been developed the program for predicting the noise spectrum of axial flow fan. The radiated acoustic pressure is expressed the discrete frequency noise peaks at BPF and its harmonics and the line spectrum at the broad band by the noise generation mechanisms. In this paper it is shown that the comparison of the measuted and calculaed noise spectra of fn for the validation of the noise predictiong program. And this paper presents the characteristics of a fan noise due to modify the design parameters. Accordingly, it was obtained the design parameter values for noise reduction of fan.

  • PDF

Computational Study of the Shr oud Shape & the ProBeller Fan (Shroud 형상에 대한 해석적 연구 및 '프로벨러 홴' 소개)

  • Han, Jae-Oh;Yu, Seung-Hun;Mo, Jin-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.638-641
    • /
    • 2008
  • Computational investigation was conducted to study the effects of the shape parameter of shroud on the performance of the outdoor unit of an air-conditioners. For this study the Design of Experiment(4-factor 3-level) was created and the an automatic program was composed using VBA to reduce the load of pre-process for CFD. The estimated mathematical equation was produced from this analysis and it was found that the gap between fan and shroud affects more heavily than the other parameters. As a result, the composition of the best parameters was verified that its flow rate was increased by 10 percents and sound pressure level was reduced by 1.2 dBA compare with the worst. And finally, a kind of Propeller fan with blades which were attached to the shroud, so-called 'ProBeller Fan' was introduced in this study.

  • PDF

An Experimental Study on the Effects of Non-uniform Inlet Flows upon Tonal Radiation from an Axial-type Propeller Fan (불균일 난류 유입유동이 프로펠러형 송풍기의 톤소음에 미치는 영향에 대한 실험적 연구)

  • Lee, Seungbae;Kim, Kwang-Yong;Yang, Gwi-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-57
    • /
    • 1998
  • The acoustic signatures from a propeller fan under non-uniform inlet flow conditions were measured to reveal the mechanism for tonal radiation. Experimental studies were carried out by generating non-uniform turbulent flows with circumferential and radial components of harmonic incoming gust deliberately. This paper reports the measured acoustic power exponents and cross-spectra for circumferential and radial disturbances at a specified flow-rate coefficient.

  • PDF

The characteristics of deep slot outside rotor type IM (외측 회전자형 심구형 유도전동기의 특성)

  • 김현수;안병원;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • This paper presents a developed deep slot squirrel cage induction motor fur the fan. Nearly all of the induction motors consist of two parts, rotor and stator, and the position of rotor is generally inside of stator. However, the rotor of the developed induction motor is located outside of stator. It is believed that the outside rotor type induction motor is suitable for the fan due to its large inertia, that is, it is considered that the change of air flow rate resulting from input power or load fluctuation is reduced. It is considered that the results of this paper can be used for the development of the outside rotor type induction motor.

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF