• Title/Summary/Keyword: Axial Displacement

Search Result 780, Processing Time 0.036 seconds

Estimation of Axial Displacement in High-speed Spindle Due to Rotational Speed (회전속도에 따른 고속 스핀들의 돌출량 예측에 관한 연구)

  • Bae, Gyu-Hyun;Lee, Chan-Hong;Hwang, Joo-Ho;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.671-679
    • /
    • 2012
  • This paper presents an estimation procedure for axial displacement in spindle equipped with angular contact ball bearings due to rotational speed. High-speed spindle-bearing system experiences axial displacement due to thermal expansion and rotational speed-dependent characteristics of angular contact ball bearings. This paper deals with the axial displacement caused by the rotational speed-dependent effects such as centrifugal force and gyroscopic moments. To this end, a bearing dynamic model is established that includes all the static and dynamic properties of angular contact ball bearing. An analytical formula to calculate the axial displacement based on contact angles between ball and races is derived to discuss the physics regarding the axial displacement in spindle. The proposed dynamic model is compared with a reference and a commercial program. Numerical examples are presented to show the effects of centrifugal force and gyroscopic moment on the axial displacement. The proposed model is also validated with an experimental result.

A Study on the dynamic characteristics of rotor systems supported by angular contact ball bearings with the axial displacement preload varied (각접촉 볼 베어링의 정위치 예압 변화에 따른 회전체 계 동특성 변화 연구)

  • 강중옥;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.389-392
    • /
    • 1997
  • This paper presents the dynamic analysis and experiment for rotor systems supported by angular contact ball bearings subjected to axial displacement preload. A dynamic software, which has been developed by the authors for the analysis of rotor systems supported by angular contact ball bearings, is used to simulate a uniform shaft system supported by two angular contact ball bearings with the axial displacement preload varied. Experiments are also performed to validate the simulation. An experimental system is constructed which consists of a uniform shaft, two bearings and a device for adjusting the axial displacement preload. Through a series of simulation and experiment, the dynamic characteristics of rotor systems with angular contact ball bearings subject to axial displacement preload are investigated.

  • PDF

The effect of axial displacement of the impeller on the performance and axial thrust of a pump (회전차의 축방향 변위가 펌프의 성능과 축추력에 미치는 영향)

  • Hong, Sun-Sam;Gang, Sin-Hyeong;Orachelashvili, B.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.562-569
    • /
    • 1997
  • The axial position of an impeller is misaligned in the process of manufacturing and assembling. For a single suction centrifugal pump with balancing holes, the effect of axial displacement of impeller on the performance, leakage loss and axial thrust acting on the impeller is experimentally investigated. The axial displacement decreases the pump efficiency, increases the leakage through the clearance between wearing ring and impeller, and affects the characteristics of axial thrust.

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

Comparison of CAD/CAM abutment and prefabricated abutment in Morse taper internal type implant after cyclic loading: Axial displacement, removal torque, and tensile removal force

  • Yi, Yuseung;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.305-312
    • /
    • 2019
  • PURPOSE. The purpose of this study was to compare computer-aided design/computer-aided manufacturing (CAD/CAM) abutment and prefabricated abutment in Morse taper internal connection type implants after cyclic loading. MATERIALS AND METHODS. The study was conducted with internal type implants of two different manufacturers (Group Os, De). Fourteen assemblies were prepared for each manufacturer group and divided into 2 groups (n=7): prefabricated abutments (Os-P, De-P) and CAD/CAM abutments (Os-C, De-C). The amount of axial displacement and the removal torque values (RTVs) were measured before and after cyclic loading (106 cycles, 3 Hz with 150 N), and the tensile removal force to dislodge the abutments was measured after cyclic loading. A repeated measures ANOVA and a pattern analysis based on the logarithmic regression model were conducted to evaluate the effect of cyclic loading on the axial displacement. The Wilcoxon signed-rank test and the Mann-Whitney test was conducted for comparison of RTV reduction% and tensile removal forces. RESULTS. There was no significant difference between CAD/CAM abutments and prefabricated abutments in axial displacement and tensile removal force; however, significantly greater RTV reduction% after cyclic loading was observed in CAD/CAM abutments. The correlation among the axial displacement, the RTV, and the tensile removal force was not significant. CONCLUSION. The use of CAD/CAM abutment did not significantly affect the amount of axial displacement and tensile removal force, but presented a significantly greater removal torque reduction% than prefabricated abutments. The connection stability due to the friction at the abutment-implant interface of CAD/CAM abutments may not be different from prefabricated abutment.

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

Cogging Torque Analysis of BLDC Motor with the Axial Displacement of Rotor (축방향 변위를 가진 BLDC 전동개의 코깅토크 해석에 관한 연구)

  • Kim, Young-Kyoun;Lee, Jeong-Jong;Nam, Hyuk;Hong, Jung-Pyo;Jin, Young-Woo;Hur, Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.368-372
    • /
    • 2003
  • This paper deals with the cogging torque analysis of a BLDC Motor, which has the axial displacement of its rotor. In order to improve the torque performance of the BLDC motor, Brushless motor is commonly designed to minimize its cogging torque. Therefore, a skewed model is used to reduce the cogging torque. However, even though the rotor or stator is skewed, the cogging torque could be increased by the axial displacement of the rotor, which occurs when the BLDC Motor is manufactured. Therefore, this paper investigates the effect of the axial displacement of the rotor on the cogging torque. In order to investigate the effect, an analysis method, which is 3D-EMCN in combination with 2D-FEM, is proposed to analyze the cogging torque of the BLDC motor with the axial displacement of its rotor, and the result of the analysis is verified by comparison with the experimental result.

Axial displacement in single-tooth implant restoration: Case report (임플란트 단일 치아 수복 시 수직 침하와 인접치와의 위치 변화: 증례 보고)

  • Jeong, Seung-Hoe;Kim, Sunjai;Chang, Jae-Seung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.126-133
    • /
    • 2021
  • Axial displacement of an implant-supported prosthesis is frequently reported in clinical and laboratory studies. However, limited information is available about the behavior of the axial displacement of implant-supported prostheses functioning in intraoral situations. The present case report evaluated the three-dimensional displacement of posterior single implant-supported prostheses in 2 different patients. Internal connection type implants were placed, and screw and cement-retained prosthesis (SCRP) type prosthesis were delivered after an appropriate healing period. Intraoral digital scans were performed using an intraoral scanner (Cerec Omnicam, Dentsply Sirona, USA) on the day of crown delivery and one week, one month, and one year after delivery. The amount of 3-dimensional displacement of the prosthesis was evaluated by using a digital inspection software (Geomagic Control X, 3D systems, USA). The axial displacement of implant-supported prosthesis occurred in both patients. Furthermore, the amount of displacement increased over time.

A Study on transverse Behavior of Lifeline System Due to Liquefaction-induced Permanent Ground Displacement (액상화 영구지반변형에 의한 라이프라인 구조물의 횡방향 거동에 관한 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.369-376
    • /
    • 1998
  • The purpose of the present study is to analyze the response of pipelines subjected to liquefaction-induced permanent ground displacement and to discuss the failure prediction of domestic waterway pipelines. Initially here, characteristics of liquefaction are reviewed and then permanent ground displacement is investigated base on previous earthquake hazard cases. Next, considering the distribution of the transverse permanent ground displacement and equivalent spring constant effect, formulas obtained by a beam theory are established to analyze continuous pipelines. This analysis was performed without consideration of axial effects. So the finite element analysis was used in order to consider the axial stiffness of soil. As a result, degree of liquefaction, width of deformed ground and axial stiffness are crucial points for evaluation the failure of pipelines subjected to permanent ground displacement.

  • PDF

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.