• Title/Summary/Keyword: Axial Compression

Search Result 841, Processing Time 0.023 seconds

An Experimental Study on the Structural Behavior of Stub Columns with HSA800 High-strength Steels under Eccentric Loads (편심하중을 받는 건축구조용 고강도 강재(HSA800) 단주의 거동에 관한 실험적 연구)

  • Lee, Kangmin;Lee, Myung Jae;Oh, Young Suk;Oh, Keunyeong;Hong, Sungbin
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.289-297
    • /
    • 2014
  • Recently, high performance steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. In this paper, flexure-compression members with the high-strength steel were experimentally evaluated to satisfy the design criteria when stub columns fabricated with HSA800 steel were eccentrically loaded. This test was conducted on box-shaped and H-shaped steels stub columns with high-strength steel to verify the P-M interaction of members subjected to combined forces according to axial load ratios. The results showed that all specimens were satisfied the requirements of Korean Building Code(KBC2009) for using of structural members.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations (다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중)

  • 이성희;김형열;박기태;박대효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.523-534
    • /
    • 2002
  • Free vibration and buckling analysis of multi-delaminated composite beam-columns subjected to axial compressive load is performed in the present study In order to investigate the effects of multi-delaminations on the natural frequency and the elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-dclamination tip. The characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delauunated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and the elastic buck)ing load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

Functional Outcomes of Subaxial Spine Injuries Managed With 2-Level Anterior Cervical Corpectomy and Fusion: A Prospective Study

  • Jain, Vaibhav;Madan, Ankit;Thakur, Manoj;Thakur, Amit
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.368-375
    • /
    • 2018
  • Objective: To evaluate the results of operative management of subaxial spine injuries managed with 2-level anterior cervical corpectomy and fusion with a cervical locking plate and autologous bone-filled titanium mesh cage. Methods: This study included 23 patients with a subaxial spine injury who matched the inclusion criteria, underwent 2-level anterior cervical corpectomy and fusion at our institution between 2013 and 2016, and were followed up for neurological recovery, axial pain, fusion, pseudarthrosis, and implant failure. Results: According to Allen and Ferguson classification, there were 9 cases of distractive extension; 4 of compressive extension; 3 each of compressive flexion, vertical compression, and distractive flexion; and 1 of lateral flexion. Sixteen patients had a score of 6 on the Subaxial Injury Classification system, and the rest had a score of more than 6. The mean follow-up period was 19 months (range, 12-48 months). Neurological recovery was observed in most of the patients (78.21%). All patients experienced relief of axial pain. None of the patients received a blood transfusion. Twenty-one patients (91.3%) showed solid fusion and 2 (8.69%) showed possible pseudarthrosis, with no complications related to the cage or plate. Conclusion: Two-level anterior cervical corpectomy and fusion, along with stabilization with a cervical locking plate and autologous bone graft-filled titanium mesh cage, can be considered a feasible and safe method for treating specific subaxial spine injuries, with the benefits of high primary stability, anatomical reduction, and direct decompression of the spinal cord.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

A Study of Estimation Method Considering Anisotropy of Shear Strength for Compacted Materials (다짐재료의 이방성을 고려한 전단강도 추정방법에 관한 연구)

  • Ham, Tae-Gew
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.255-262
    • /
    • 2008
  • In order to investigate the strength anisotropy of compacted materials, a series of unsaturated and saturated-drained triaxial compression tests was performed. Three different orientation angles of the axial direction of samples with respect to the horizontal plane were investigated: ${\delta}=0$, 45 and 90 degrees. As the results showed, the suction rate on the strength of the unsaturated specimen was not influenced by ${\delta}$. And the effect of the angle ${\delta}$ on the strength was more pronounced on unsaturated specimen as compared to saturated specimen. Moreover, a new procedure was proposed to take into account the effect of the angle ${\delta}$ on the shear strength of unsaturated soils.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

A Study on the Characteristics of SM570TMC Plates in Compression Members (SM570TMC 강재의 압축재 특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.357-363
    • /
    • 2005
  • There is a great need for high-strength steel especially for the high-rise steel building structure. High-strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether the inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel was tested to evaluate buckling strength under axial compressive force. The comparison tests for local buckling strength evaluation of box-type and H-shaped welded columns were performed with variable width-thickness ratios. As for the experimental check, the maximum strength of stub column was determined by local buckling as far as the limit of width-to-thickness ratio was satisfied with current design codes. Also, the strength of the stub column did not decrease suddenly by local buckling before maximum strength even when the ratio is not satisfied. The buckling strength of SM570TMC steel was higher than both ASD (Allowable Stress Design) and LRFD (Load and Resistance Factor Design) specifications.

A study on anisotropic characteristics of axial strengths in $\alpha$-quartz by using molecular dynamics simulation and uniaxial compression test (분자동력 학 시뮬레이션과 일축압축강도시험을 이용한 $\alpha$-quartz의 결정축에 따른 강도이방성 검토)

  • ;;市川康明;河村雄行
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • We carried out NPT-ensemble (constant-number of particles, pressure, and temperature) Molecular Dynamics (MD) simulations for measuring strength anisotropy under uniaxial compressive stress rotated to the crystallographic axes in $\alpha$-quartz. Uniaxial compressive strengths of a single quartz crystal were measured in directions of the a- and c-axis. Measured uniaxial strength of a single quartz crystal was higher in the direction parallel to the c-axis than that measured in the direction normal to the c-axis. However the reverse was found in calculated uniaxial strengths by MD simulation. The contradictive result of strengths was observed in both cases but was found to be different in origin. Strength anisotropy of defectless $\alpha$-quartz crystal in MD simulation is basically caused by structural difference of quartz. By contrast, anisotropy of measured strength in the uniaxial compression test is related to oriented micro-defects developed during crystal growth.

  • PDF