• Title/Summary/Keyword: Axial BLDC motor

Search Result 25, Processing Time 0.03 seconds

High Speed Axial-gap BLDC Mtor Design (고속용 Axial-gap BLDC Motor 설계)

  • Kim, Young-Kwan;Park, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.116-118
    • /
    • 1998
  • This paper describes a basic structure, analysis of characteristics and test method for high speed axial-gap BLDC motor. The newly designed axial-gap BLDC motor has 2-stator disks with 3-rotor disks and is easy to increase power capacity by increasing the numbers of stator/rotor disks. For high speed operating, the rotor is composed of light and strong strength material and has several separated magnets to reduce stress concentraction by centrifugal force.

  • PDF

Cogging Torque Analysis of BLDC Motor with the Axial Displacement of Rotor (축방향 변위를 가진 BLDC 전동개의 코깅토크 해석에 관한 연구)

  • Kim, Young-Kyoun;Lee, Jeong-Jong;Nam, Hyuk;Hong, Jung-Pyo;Jin, Young-Woo;Hur, Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.368-372
    • /
    • 2003
  • This paper deals with the cogging torque analysis of a BLDC Motor, which has the axial displacement of its rotor. In order to improve the torque performance of the BLDC motor, Brushless motor is commonly designed to minimize its cogging torque. Therefore, a skewed model is used to reduce the cogging torque. However, even though the rotor or stator is skewed, the cogging torque could be increased by the axial displacement of the rotor, which occurs when the BLDC Motor is manufactured. Therefore, this paper investigates the effect of the axial displacement of the rotor on the cogging torque. In order to investigate the effect, an analysis method, which is 3D-EMCN in combination with 2D-FEM, is proposed to analyze the cogging torque of the BLDC motor with the axial displacement of its rotor, and the result of the analysis is verified by comparison with the experimental result.

A Study Stratum Axial Type BLDC Motor Speed Control using TDOF Controller (2자유도 제어기를 이용한 적층형 BLDC 모터의 속도제어 연구)

  • Lee, Jong-Hyun;Baek, Seung-Kil;Lee, Cheol-Hwan;Kang, Seung-Uk;Kim, Yeong-Ju;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1162-1164
    • /
    • 2000
  • Stratum Axial Type BLDC Motor has remarkable efficiency owing to outstanding characteristics of speed and torque as well as its small size. In this paper 2-Degree of Freedom PI (TDOF PI) control method is presented in order to improve the efficiency of Stratum Axial Type BLDC Motor and the simulation proves that the separate control for speed characteristic from answering characteristic of load torque particularly allows the construction of superior control system to PI control system. These results are significant in that the improved Stratum Axial Type BLDC Motor enables the production of much smaller, lighter, and noiseless electric home appliances such as air-conditioner and refrigerator.

  • PDF

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by Numerical Method (수치해석에 의한 고속팬용 밀폐구조형 BLDC모터의 열신뢰성 분석)

  • Moon, Sun-Ae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.130-138
    • /
    • 2010
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this paper. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. When the environment temperature of BLDC motor is 21, 35 and 50 $^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and 102.4 $^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328 hours.

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test (가속수명시험에 의한 고속팬용 밀폐구조형 BLDC 모터의 열신뢰성 분석)

  • Lee Tae-Gu;Moon Jong-Sun;Yoo Hoseon;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this paper, thermal reliability of a closed type BLDC (Brushless DC) motor for high speed axial fan was analyzed by the accelerated life test. The closed type BLDC (Model No. MB1-8855-J01) motor was controlled by PCB module, which was composed of various electrical components. The failure of the closed type BLDC motor happened in PCB module due to high temperature. Failure mechanism of the closed type BLDC motor appears to be electrolyte dry out of capacitor. The accelerate life test was performed in temperature stress of $85^{\circ}C\;and\;105^{\circ}C$, respectively The failure data from the accelerated life test were analyzed and the life in each stress level was estimated with 960h and 261 h. At last, both life expression according to operating temperature of PCB module and life of the closed type BLBC motor in normal condition $(50^{\circ}C)$ were suggested.

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor (외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Lee, Kwan-Soo;Wang, Se-Myung;Shim, Ho-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2518-2523
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type of a BLDC motor are numerically analyzed using three-dimensional turbulence modeling. In an advance design of BLDC motor, cooling blades and holes are preferred for the enhanced cooling performances. Rotating the blades and holes generates axial air flow passing through stator slots, which cools down stator by forced convection. For the present study, a new design of the BLDC motor has been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes, and cooling blades and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

  • PDF

Design of slotless BLDC motor using film coil (필름코일을 이용한 슬롯리스형 BLDC 모터의 설계)

  • Kim, Mhan-Joong;Jae, Hwan-Young;Kim, Hak-Won;Sung, Byung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.104-106
    • /
    • 2001
  • In this paper, it is object of design of high efficiency slotless BLDC motor using film coil. Slotless BLDC motor is able to have high efficiency property and low cogging torque, due to magnetization of stator core have constant contribution by slotless core. But it is difficult to make coil winding of slotless BLDC motor. So we make amateur of slotless BLDC motor using film coil. Film coil is fabricated by drilling, electro-plating and etching of copper/insulator/copper plate. In this paper, after design of slotless BLDC motor for moving axial blower, it is fabricated by NdFeB permanent magnet type rotor and film coil.

  • PDF

The vibration and noise characteristic analysis of the BLDC Axial-gap type motor by using Finite Element Method (FEM 을 이용한 BLDC Axial-gap type 전동기의 진동과 소음 특성 분석)

  • Lee, Taeck-Jin;Park, Jun-Hong;Lee, Sang-Ho;Hong, Jung-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.943-946
    • /
    • 2007
  • The vibration and noise characteristic of the Axial-gap motor for an air conditioner were analyzed. Experimental Modal Analysis was performed to understand the vibration characteristic of the motor. The noise of motor was measured in a dead room. Finite Element Method was performed to find the vibration characteristic of the motor by using ABAQUS program.

  • PDF

A Study on the Cogging Torque Reduction in a Novel Axial Flux Permanent Magnet BLDC Motor (축방향 자속형 영구자석 BLDC 전동기의 코깅 토크 저감에 관한 연구)

  • Jo, Won-Young;Lee, In-Jae;Koo, Dae-Hyun;Chun, Yon-Do;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.437-442
    • /
    • 2006
  • Cogging torque, the primary ripple component in the torque generated by permanent magnet (PM) motors, is due to the slotting on the stator or rotor. This article shows the reduction of cogging torque in a novel axial flux permanent magnet (AFPM) motor through the various design schemes. 3D finite element method is used for the exact magnetic field analysis. The effects of slot shapes and skewing of slot on the cogging torque and the average torque have been investigated in detail.

Thermal Reliability Analysis of a Closed Type Motor in an Axial Fan for the Large Space Ventilation (대형공간환기용 축류팬에 사용되는 밀폐형 모터의 열신뢰성 분석)

  • Lee, Tae-Gu;Hur, Jin-Huek;Moon, Sun-Ae;Yoo, Ho-Seon;Moon, Seung-Jae;Lee, Jae-Heon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.494-499
    • /
    • 2007
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this dissertation. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. The experiment for measuring the surface heat flux of the electronic components is carried out to apply the boundary condition of numerical study. When the environment temperature of BLDC motor is 21, 35 and $50^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and $102.4^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328.

  • PDF