• Title/Summary/Keyword: Avionics System

Search Result 304, Processing Time 0.023 seconds

Analysis for Unmanned Aerial Vehicle Airworthiness Certification Criteria (소형 무인항공기 감항인증 기술기준 및 에너지 충돌기법 분석 연구)

  • Lim, Jun-Wan;Kim, Yong-Rae;Choi, Byung-Chul;Ko, Joon-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2014
  • Unmanned aerial vehicles(UAVs) refer to the aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military application. As the avionics and communication technology related to the UAVs are matured, the demand for the UAVs is dramatically increased. Therefore, It is important to develope airworthiness process and regulations of the UAVs to minimize related risk to the man and environment. This paper describes related regulations and classification of the small UAVs for different international airworthiness authorities. The analysis of the CS-LURS verses Stanag 4702 and Stanag 4703 can provide guidelines for the generation of the airworthiness certification criteria for the small UAVs in civil sector. This paper conducted kinetic impact energy analysis of the loss of the small UAVs control scenarios and of the very small UAVs under 66 joules. Based on the analysis, the energy impact analysis can be considered before the design certification approval for the small UAVs.

Implementation of Educational UAV with Automatic Navigation Flight

  • Park, Myeong-Chul;Hur, Hwa-ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.29-35
    • /
    • 2019
  • This paper proposes a UAV equipped with an automatic control system for educational purposes such as navigation flight or autonomous flight. The proposed UAV is capable of automatic navigation flight and it is possible to control more precisely and delicately than existing UAV which is directly controlled. And it has the advantage that it is possible to fly in a place out of sight. In addition, the user may arbitrarily change the route or route information to use it as an educational purpose for achieving the special purpose. It also allows you to check flight status by shooting a video during flight. For this purpose, it is designed to check the image in real time using 5.8GHz video transmitter and receiver. The flight information is recorded separately and used as data to judge the normal flight after the flight. The result of the paper can be flighted along the coordinates specified using GPS information. Since it can receive real-time video, it is expected to be used for various education purposes such as reconnaissance of polluted area, achievement of special purpose, and so on.

Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development (한국형 전투기(KF-X) AESA 레이다 개발 검증을 위한 점진적인 시험평가 전략)

  • Shinyoung Cho;Yongkil Kwak;Hyunseok Oh;Hyesun Ju;Hongwoo Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-394
    • /
    • 2024
  • This paper describes a progressive test and evaluation strategy for verification of Korean Fighter eXperimental (KF-X) AESA(Active Electronically Scanned Array) radar development. Three progressive stages of development test and evaluation were officially performed from simulated test conditions to actual operating conditions according to standards: radar function/performance and avionics integration. KF-X AESA radar development is repeatedly verified by progressive stages consisting of five tests: Roof-lab ground test, System Integration Laboratory(SIL) ground test, Flying Test Bed(FTB) test, KF-X ground test, and KF-X flight test. As a result, the risk factor decreases as stages and tests progress. Therefore, development test and evaluation of KF-X AESA radar are successfully performed at low development risk.

Development of the MEP Integration Test Environment for Surion (수리온 임무탑재체계의 통합시험 환경개발)

  • Kim, Yoo-Kyung;Kim, Myung-Chin;Choi, Won-Woo;Oh, Woo-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.666-673
    • /
    • 2011
  • To perform effective integration test of avionics equipments, the importance of a setup for integration test environment has been increasing in recently developed aircraft. Especially, the development of integration test equipment is necessary for minimizing the development period and reliability of integration test. This paper treats the model development for optimal working of integration test after analyzing the characteristics of each MEP equipments for Surion(KUH). Models, whose main role is troubleshooting of equipment and simulation for missing equipments, consists of dynamic, behavior, and ICD models depending on the dynamic characteristics. Software test for both unit level and system level are performed to verify the model reliability. By conducting integration test using SIL, it is confirmed that the developed models are suitable for integration function test of the MEP system.

A study on the parallel processing of the avionic system computer using multi RISC processors (다중 RISC 프로세서를 이용한 항공전자시스템컴퓨터 병렬처리기법 연구)

  • Lee, Jae-Uk;Lee, Sung-Soo;Kim, Young-Taek;Yang, Seung-Yul;Kim, Bong-Gyu;Hwang, Sang-Hyun;Park, Deok-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.144-149
    • /
    • 2002
  • This paper presents a technique for real time multiprocessor parallel processing to develop an avionic system computer(ASC) which integrates the avionics control, navigation and fire control, cursive and raster graphic symbol generation into one line replaceable unit. The proposed method has optimal performance by adopting a logically asymmetric structure between four 32bit RISC processors based on the master-slave multiprocessing, a tightly coupled interaction level with the time shared common bus and global memory, and an efficient bus arbitration algorithm. The ASC has been verified through a series of flight tests. The relevant tests also have been rigorously conducted on the prototype ASC such as electrical test, environmental test, and electromagnetic interference test.

Development of Operational Flight Program for Stores Management Computer (무장관리컴퓨터 탑재소프트웨어 개발)

  • Lee, Sang Cheol;Kim, In Gyu;Kim, Yeong Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.124-133
    • /
    • 2003
  • We propose an application of the Object-Oriented design methodology to develop operational flight program(OFP) for stores management computer(SMC) which manages and controls stores inventory, stores activation, launch for missiles, and release of the conventional weapons. For the development of SMC, a military version of PowerPC 603e is used as a central processing unit board and VxWorks real-time operating system is used. The Tornado software development environment(SDE) and the programming language Ada95 are used for OFP development. We design three layerd in the OFP for the independency of the software modules. An avionics system computer(ASC) simulator and a test bench are developed for the SMC integration test and verification test. And the tests are rigorously and successfully conducted.

System Modeling and Waypoint Guidance Law Designing for 6-DOF Quadrotor Unmanned Aerial Vehicle (6-자유도 쿼드로터 무인항공기의 모델링 및 유도기법 설계)

  • Lee, Sanghyun;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • As avionics and mechanical devices have been developed, the size of unmanned aerial vehicle (UAV) is getting smaller. However, the complicated and accurate missions are provided to the UAV. Among various types of UAVs, quadrotors are widely used for their availability by virtue of simple structure and hovering function. However, the control of quadrotor is highly constrained, because the quadrotor is an under-actuated system which has only 4 actuator inputs. To deal with this under-actuated problem, a new quadrotor model with two more actuators in addition to the 4 propeller inputs is provided to make the system fully-actuated. For the proposed model, a controller is designed using feedback linearization methods. To validate the model and to verify the performance of the proposed controller, numerical simulation is performed.

Development of Operational Flight Program for Avionic System Computer (항공전자시스템컴퓨터 탑재소프트웨어 개발)

  • Kim, Young-Il;Kim, Sang-Hwan;Lim, Heung-Sik;Lee, Sung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.104-112
    • /
    • 2005
  • This paper presents the technique to develop an operational flight program(OFP) of avionic system computer(ASC) which integrates the avionics control, navigation and fire control and provides informations for flight, navigation and weapon aiming missions. For the development of the OFP of ASC, two i960KB chips are used as central processing units board and standard computer interface library(SCIL) which is built in house is used. The Irvine compiler corporation(ICC) integrated development environment(IDE) and the programming language Ada95 are used for the OFP development. We designed the OFP to a computer software configuration item(CSCI) which consists of to three parts for independency of software modules. The OFP has been verified through a series of flight tests. The relevant tests also have been rigorously conducted on the OFP such as software integrated test, and ground functional test.

Establishment of Flight Inspection Evaluation Items and Optimal Design of SBAS Performance Test Measurement Equipment by Analyzing Evaluation Items and Essential Components of Korean SBAS (한국형 SBAS의 평가항목 및 필수 구성요소 분석을 통한 비행검사 평가항목 수립 및 SBAS 성능 시험 측정 장비 최적 설계 방안)

  • Kim, Young-Bin;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2021
  • Due to rapidly increasing air traffic congestion and airspace restrictions, the International Civil Aviation Organization (ICAO) is urging all aircraft to use SBAS by 2025, in order to implement Performance-based navigation to increase airspace capacity. In line with this, research and development of Korean-style SBAS, which reflects the characteristics of Korea's airspace environment, continues in Korea. Since there is no flight inspection procedure for performance testing and verification of SBAS in Korea yet, this paper analyzes FAA, ICAO Regulations, and laws enacted by the Ministry of Land, Infrastructure and Transport to derive essential evaluations and parameters of Korean SBAS, and presents the optimal design using RTK-DGPS as a position fixing system.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (3) - Flight Test Results and Analysis of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (3) - 태양광 무인기 비행실험 결과 및 분석 -)

  • Kim, Doyoung;Kim, Taerim;Jeong, Jaebaek;Park, Sanghyuk;Bae, Jae-Sung;Moon, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.489-496
    • /
    • 2022
  • This paper introduces the system for KAU-SPUAV, which is designed and developed by Korea Aerospace University, and verifies its performance through flight test. Specification of two versions of KAU-SPUAV, avionics system, and Ground Control System (GCS) are introduced. Three missions are performed with suggested UAVs: LTE signal mapping, circumnavigation of Jeju island seashore, and long endurance flight. Each mission consists of long distance and long endurance flight which takes advantage of KAU-SPUAV. Research team of KAU-SPUAV confirmed its versatility through suggested flight data. Also based on flight results, the team found the potential of performance improvement of KAU-SPUAV.