• Title/Summary/Keyword: Avionics Equipment

Search Result 71, Processing Time 0.026 seconds

Concept Study of Mission Equipment Package Architecture for Korean Attack Helicopter (한국형 공격헬기 임무탑재장비 구조도 개념 연구)

  • Kim, Sung-Woo;Kim, Myung-Chin;Oh, Woo-Seop;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.598-606
    • /
    • 2011
  • The importance of avionics systems has increased to a significant level in modern aircraft development. Modern avionics system is a complex integrated system of state-of-art hardware and software technology. Specifying the avionics system architecture is the most important task throughout the avionics system design process. This paper reviews modern avionics system architectures and proposes an effective avionics architecture suitable for modern attack helicopters.

Avionics Software Data Modeling Method and Test For FACE Conformance (FACE 적합성을 위한 항공전자 소프트웨어 데이터 모델링 방안 및 검증)

  • Kyeong-Yeon, Cho;Doo-Hwan, Lee;Sang-Cheol, Cha;Jeong-Yeol, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-53
    • /
    • 2022
  • The avionics industry has recently adopted an open architecture to increase software portability and reduce the development schedule and cost associated with changing hardware equipment. This paper presents a data modeling method compliant with FACE, a widely used open avionics architecture. A FACE data model is designed and implemented to output data from VOR/ILS avionics equipment. A FACE Conformance Test Suite (CTS) program is utilised to verify that the data model meets FACE standards. The proposed data modeling method is expected to improve the development schedule and cost associated with modifying communication methods and ICDs (Interface Control Documents).

A Study on the Structural Analysis and Design of Avionics Equipment (항공전자장비의 구조해석 및 설계에 대한 연구)

  • Choi, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2015-2022
    • /
    • 2012
  • This paper is about the analysis and design of avionics equipment's housing and PCB(Printed Circuit Board) such as air data computer. Avionics equipment's structural design as well as electrical properties is very critical and should be proved from design phase by analysis method. First, analyze the static load and vibration requirement for the installed equipment, and then proved it satisfy with its requirement using the computational structural analysis. Commercial tools were used for computation and the rib design of housing was verified and the placement of electrical component was proposed using the PCB's local displacement information.

Requirements Development for Intermittent Failure Detection of an Avionics Backplane based on Physics-of-Failure (백플레인 형식 항전장비에서 발생하는 간헐결함 탐지를 위한 고장물리 기반의 요구도 개발)

  • Lee, Hoyong;Lee, Ighoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.15-23
    • /
    • 2019
  • This paper contains analyses and development processes of the requirements to detect the possible intermittent failure in an old avionics backplane. Interconnections for signal transmission between electronic components, such as Pin-to-PCB, FPCB-to-FPCB, pin-to-FPCB, and pint-to-wire, were selected as the main cause of intermittent failure by analyzing target equipment and documents. The possibility of detecting intermittent failures occurring in the target equipment is verified by physics-of-failure analyses. In order to verify the occurrence of intermittent failures and their detectability, latching continuity circuit testers were manufactured and accelerated life tests were performed by applying temperature and vibration cycle in consideration of flight conditions. Through the above process, the detection requirements for the major intermittent failure in the target avionics backplane was developed.

Event-Driven Modeling and Simulation Method Applicable to Avionics System Integration Laboratory (항공용 SIL에 적용 가능한 이벤트 기반 모델링 및 시뮬레이션 방법)

  • Shin, Ju-chul;Seo, Min-gi;Cho, Yeon-je;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.184-191
    • /
    • 2020
  • Avionics System Integration Laboratory is the integrated test environment for integration and verification of avionics systems. When real equipment can not be used in the laboratory for various reasons, software models should be needed. Because there hasn't been any standardized method for the models so that it is difficult to reuse the developed models, the need for a framework to develop the avionics software models was emerged. We adopted DEVS(discrete event system specification) formalism as the standardized modeling method for the avionics software models. Due to DEVS formalism is based on event-driven algorithm, it doesn't accord a legacy system which has sequential and periodic algorithms. In this paper, we propose real-time event-driven modeling and simulation method for SIL to overcome these restrictions and to maximize reusability of avionics models through the analysis of the characteristics and the limitations of avionics models.

Preminary analysis of performance of avionics equipment using worst case analysis (Worst Case 분석을 이용한 항공 전자장비 성능 사전분석)

  • Cheon, Young-ho;Woo, Hui-Seung;Seo, Inn-beom;Ahn, Tae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.185-194
    • /
    • 2022
  • Avionics equipment requires various environmental conditions and performance during development, and as a countermeasure against such development risk, the worst-case circuit analysis(WCCA) is applied to predict perform preliminary performance analysis. WCCA calculates the maximum and minimum values by combining the parameter values of the relevant circuit after deriving the parameter values in consideration of the aging of the temperature and operating period at the component level. In this paper, the necessary matters for WCCA application are described. Chapter 2 describes the differences and characteristics of the WCCA techniques EVA, RSS, and Monte Carlo.Chapter 3 introduces the analysis process through the example circuit to introduce the actual analysis procedure. Chapter 4 describes the method of selecting an analysis technique for each condition of the analysis target. As a result of applying the procedures and analysis methods introduced in this paper when open, it was confirmed that preliminary performance analysis and part optimization design verification are possible.

Development and Verification of Lightning Induced Transient Protection Device for Avionics Computer (항공기 탑재 컴퓨터용 간접낙뢰 보호장치 개발 및 검증)

  • Sim, Yong-gi;Ahn, Tae-sik;Park, Jun-hyun;Han, Jong-pyo;Yang, Seo-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.395-402
    • /
    • 2015
  • This paper introduces the design details and test procedures of the lightning induced transient protection device for protecting the damage caused by indirect lightning strike on the computer mounted on the aircraft. Lightning induced surge voltage is bring a malfunction or damage to the aircraft electrical and electronic equipment, that is referred to indirect effects of lightning. In order to protect the electronic equipment on aircraft from the indirect effects of lightning, that is achieved by analyzing the effect on aircraft from lightning and protect design for each devices. In this paper, we introduce an indirect lightning strike level decisions, the protection circuit design method according to the chosen level through the RTCA DO-160G Section 22 category analysis and selection was performed in order to protect the damage caused by indirect lightning strikes in the protected equipment. In addition, we show the indirect lightning effects verification test performed to validate the designed protection circuits.

Maintainability Improvement of Automatic Test Equipment for Aircraft (비행체 자동점검장비의 유지보수성 향상 방안)

  • Seo, Min-gi;Kwon, Ki-yong;Kim, Seong-woo;Lee, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.508-513
    • /
    • 2017
  • Maintainability in engineering terms means ease of maintenance / management of the product. Aircraft automatic test equipment (ATE) is heavily influenced by the design changes of the unit under test(UUT) since the test procedure is developed according to the function / performance characteristics of the UUT. Moreover, if the integrated ATE is an environment that checks more than one UUT, it is not easy to maintain the ATE for the UUT design changes. Developers should be able to flexibly cope with the change of development staff by selecting an easy and clear development method to improve the maintainability of ATE. It is also necessary to limit the area affected by the UUT design change to a specific range to minimize the area to be modified. In this paper, we propose ATE development method which focuses on maintenance improvement based on the aircraft ATE development process.

Avionics Parts Certification Trend (항공전자 부품의 인증동향)

  • Han, Sang-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.131-139
    • /
    • 2010
  • Avionics technologies have been developed with a development of an airplane since 1903. Historically, radio communication was started in 1910's, radio navigations in 1920's and autopilot was applied first in 1930's. Glass cockpit was initiate on MD-80 in 1979 first and now spreaded widely and similar with GPS navigation. Avionics in modern aircraft has a great deal of importance in view of flight safety and maintaining comfortableness. As avionics develops, so do the certification technologies. This paper introduces update avionics certification technologies developed recently.

  • PDF

Evaluation of AFDX Certification Support System by both AFDX Tap and AFDX Analyzer (AFDX Tap과 AFDX 프로토콜 분석기를 이용한 AFDX 네트워크 인증 기술)

  • Park, Pusik;Son, Myeonghwan;Lee, Jeongdo;Yoon, Jongho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Avionics Full-DupleX Ethernet (AFDX) is a next-generation avionics network interface technology that is widely applied in the latest aircraft to replace ARINC429 and MIL-STD-1553B. However, the criteria for authenticating an avionics network consisting of AFDX are very scarce. Using AFDX Protocol Analyzer developed by the Korea Electronics Technology Research Institute and AFDX Tap developed by the Korea Aerospace University, we proposed a technology of certification practicality that can verify the normal functioning of avionics equipment with AFDX network interface. Our proposed technology provided the ability to collect precision packets, to verify AFDX specification compliance, and perform automatic tests to reduce the time and cost of authentication of AFDX avionics devices.