• Title/Summary/Keyword: Avicel

Search Result 135, Processing Time 0.029 seconds

Optimization of ${\beta}$-Glucosidase Production by a Strain of Stereum hirsutum and Its Application in Enzymatic Saccharification

  • Ramachandran, Priyadharshini;Nguyen, Ngoc-Phuong-Thao;Choi, Joon-Ho;Kang, Yun Chan;Jeya, Marimuthu;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.351-356
    • /
    • 2013
  • A high ${\beta}$-glucosidase (BGL)-producing strain, Stereum hirsutum, was identified and isolated and showed a maximum BGL activity (10.4 U/ml) when cultured with Avicel and tryptone as the carbon and nitrogen sources, respectively. In comparison with other BGLs, BGL obtained from S. hirsutum showed a higher level of activity to cellobiose ($V_{max}$ = 172 U/mg, and $k_{cat}$ = 281/s). Under the optimum conditions (600 rpm, $30^{\circ}C$, and pH 6.0), the maximum BGL activity of 10.4 U/ml with the overall productivity of 74.5 U/l/h was observed. BGL production was scaled up from a laboratory scale (7-L fermenter) to a pilot scale (70-L fermenter). When S. hirsutum was cultured in fed-batch culture with rice straw as the carbon source in a 70-L fermenter, a comparable productivity of 78.6 U/l/h was obtained. Furthermore, S. hirsutum showed high levels of activity of other lignocellulases (cellobiohydrolase, endoglucanase, xylanase, and laccase) that are involved in the saccharification of biomasses. Application of S. hirsutum lignocellulases in the hydrolysis of Pinus densiflora and Catalpa ovata showed saccharification yields of 49.7% and 43.0%, respectively, which were higher than the yield obtained using commercial enzymes.

Studies on Lipid Oxidative Browning - Effects of Water Activities and Temperatures on Maillard Reaciton of Amino Acids-Oil - (지질산화에 의한 갈변에 관한 연구 - 지질과 아미노산의 Maillard 반응에 있어서 Aw와 온도의 영향 -)

  • 서재수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.998-1004
    • /
    • 1995
  • This study was carried out in order to investigate the browning reaction of fish oil-amino acid model system at different temperatures and watger activities. The 23 amino acids, induced during dehydration in the presence of oil and avicel(5 to $45^{\circ}C$), Aw 0.33 to 0.95, were resulted in three types of browning patterns : Type I showed high browning rates at Aw 0.33, 0.95 than at Aw 0.52, 0.75(phenylalanine, trans-4-hydroxy-L-proline, methionine, valine). Type II showed high browning rates decreased with increasing water activity(poline, leucine, isoleucine, arginine). Type III showed high browning rates at Aw 0.52, 0.75 than at Aw 0.33, 0.95(tryptophan, cystein, threonine, lysine). The temperature effect on the browning development of the four most active amino acids : phenylalanine, valine, trnas-4-hydroxy-proline and methionine are shown to represent the 23 amino acids. Above $25^{\circ}C$ the browning rate began to increase. Activation energy of the amino acids-fish oil was 8 to 40kcal/mole, and $Q_{10}$ were 2 to 10.

  • PDF

Kinetic Studies on Enzymatic Hydrolysis of Cellulose(II) - Evaluation of Several Factors for Enzyme Adsorption and Initial Hydrolysis - (섬유소 가수분해반응에 관한 연구(II) - 효소흡착과 가수분해반응에 관여하는 여러인자의 영향 -)

  • Lee, Yong-Hun;Kim, Chul
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.167-174
    • /
    • 1991
  • Enzymatic cellulose hydrolysis depends on the several factors such as the structural features (CrI, particle size and surface area, etc.), the nature of cellulase enzyme system, the inhibitory effects of products, and enzyme deactivation. At the presence of products on the initial hydro- lysis rate of cellulose, cellobiose has more severe inhibitory effect than glucose. Othewise, the inhibition effect of products for adsorbed enzyme is related to the glucose and cellobiose conentration hyperbolically. Enzyme deactivation of FPA and ${\beta}-glucosidase$ were expressed by exponential decay profile.

  • PDF

Effect of the paper acidity on the cellulolytic activity of fungi (종이의 산성화가 미생물의 분해능에 미치는 영향)

  • Han, Sung-Hee;Lee, Kyu-Shik;Chung, Young-Jae;Lee, Hye-Yun
    • 보존과학연구
    • /
    • s.19
    • /
    • pp.3-22
    • /
    • 1998
  • The effect of pH on degradation of paper by some fungi, which able to degrade cellulose, was investigated. Trichoderma koningii, Aspergillus nigerand Penicillium nigulosum were cultured at $28^{\circ}C$ for 16 days in the selective medium (PH3, PH4, PH5, PH6, PH7, PH8, PH9, PH10, PHC) containing paper as substrate. Each paper was pretreated with each pH buffer (pH 3∼pH 10, D.W.)prior to addition to the selective medium. Enzyme activities in the each culture medium were measured spectroph to metrically using C.M.C., Avicel, PNPG as the substrates for endoglucanase, exoglucanase and $\beta$-glucosidase, respectively. In all experimental fungi, the enzyme activities of PH3 and PH9 medium were usually much higher than those of other experimental groups. However in the PH6medium, enzyme activity was lower than other groups. To analyze the concentration and pattern of protein in the each culture medium, the medium was concentrated by lyophilization. The protein concentration of PH3 and PH9 medium were relatively high (T.koningii; 6.31mg, 6,19mg, A.niger; 1.62mg, 1.96mg, P.nigulosum;2.50mg, 2.73mg, respectively), but that of PH6 was relatively low. The protein pattern of each medium was analyzed by using SDS-PAGE and VDS Image Master Analysis Program. The concentrations of bands in the each lane were usually high at lane2 (PH3) and lane8 (PH9) and low at lane5 (PH6). Therefore, the incresed cellulolytic activity of fungus against acidified paper could be result of structural change and deterioration of paper caused by being acidified.

  • PDF

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen;Ni, Guorong;Zhao, Xiaoyan;Wang, Fei;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1446-1454
    • /
    • 2021
  • Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.

Cloning of the Cellulase Gene and Characterization of the Enzyme from a Plant Growth Promoting Rhizobacterium, Bacillus licheniformis K11 (고추역병 방제능이 있는 식물성장촉진 균주 Bacillus licheniformis K11의 cellulase 유전자의 cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • The cellulase gene of Bacillus licheniformis K11 which has plant growth-promoting activity by auxin and antagonistic ability by siderophore was cloned in pUC18 using PCR employing heterologous primers. The 1.6kb PCR fragment contained the full sequence of the cellulase gene, denoted celW which has been reported to encode a 499 amino acid protein. Similarity search in protein data base revealed that the cellulase from B. licheniformis K11 was more than 97% identical in amino acid sequence to those of various Bacillus spp. The cellulase protein from B. licheniformis K11, overproduced in E. coli DH5${\alpha}$ by the lac promoter on the vector, had apparent molecular weight of 55 kDa upon CMC-SDS-PAGE analysis. The protein not only had enzymatic activity toward carboxymethyl-cellulose (CMC), but also was able to degrade insoluble cellulose, such as Avicel and filter paper (Whatman$^{\circledR}$ No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. Consequently B. licheniformis K11 was able to suppress the peperblight causing P. capsici by its cellulase. Biochemical analysis showed that the enzyme had a maximum activity at 60$^{\circ}C$ and pH 6.0. Also, the enzyme activity was activated by Co$^{2+}$ of Mn$^{2+}$ but inhibited by Fe$^{3+}$ or Hg$^{2+}$. Moreover, enzyme activity was not inhibited by SDS or sodium azide.

Studies on Characteristics of the Cellulolytic Enzymes Produced by Pleurotus sajor-caju (Pleurotus sajor-caju가 생산(生産)하는 섬유소(纖維素) 분해(分解) 효소(酵素)의 성질(性質)에 관한 연구(硏究))

  • Hong, Jai-Sik;Lee, Ji-Yul;Kim, Dong-Han;Lyu, Gun-Sok
    • The Korean Journal of Mycology
    • /
    • v.12 no.4
    • /
    • pp.133-140
    • /
    • 1984
  • Some properties of cellulolytic enzymes produced by Pleurotus sajor-caju JAFM 1017 during its growth in synthetic medium were investigated. The optimum pH of avicelase, CMCase, and ${\beta}-glucosidase$ was pH 5.5, pH 4.5 and pH 6.0, respectively. Avicelase and CMCase were stable within pH 5.0 to 6.0 and 4.0 to 6.0, respectively, and ,${\beta}-glucosidase$ was within pH 5.5 to 6.5. The optimum temperature of avicelase, CMCase and ${\beta}-glucosidase$ was the same of $40^{\circ}C$. The enzymes were stable below the optimum temperature, but the enzymes were unstable over the temperature of $50^{\circ}C$, and avicelase was losing about 91.7% of activity at $70^{\circ}C$ for 10 min. The enzyme activity of avicelase and CMCase was increased in proportion to the substrate concentration within 1% and 0.7%, respectively, and ${\beta}-glucosidase$ was within 0.1%. The Michaelis constants (Km) of avicelase and CMCase were 30.77mg avicel/ml and 14.64m Na-CMC/ml, respectively and ${\beta}-glucosidase$ was 5. 13mg salicin/ml. The reducing sugar production of avicelase was proportionaly increased until 120 min. and CMCase and ${\beta}-glucosidase$ were until 60min. The activity of three cellulolytic enzymes were increased by $Ca^{2+}$ at the concentration of $10^{-2}M$, but were inhibited by $Hg^{2+}$, $Ag^+$.

  • PDF

Production and Action of Microbial Piscicidal Substance (미생물에 의한 살어성물질의 생성 및 그 작용)

  • 도재호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 1978
  • Piscicidal substance produced by Streptomyces sp. isolated from soil was toxic against various kinds of fish. After extraction with CH$Cl_3$ from the culture medium, the substance was purified by avicel column chromatography. In order to test toxicity, various kinds of fish were subjected to the acqueous solution of 100 us of the substance per liter of water. Generally, the substance was toxic to most fish, but Macropodus chinenes and Misgurnus mizolepis are resistant to the substance than Gobius similis and Pseudorasbora parva. The substance was stable at pH range, 3.0 to 7.0, but labile at alkaline pH, and to heat as well. Succinic dehydrogenase on most of tissue cell of Cyprinus carpio was inhibited by this substance strongly, but spinal cord was not inhibited. By addition of Cu and Pb salts to the culture medium, piscicidal substance producibility was activated.

  • PDF

Selection of Multienzyme Complex-Producing Bacteria Under Aerobic Cultivation

  • Pason Patthra;Chon Gil-Hyong;Ratanakhanokchai Khanok;Kyu Khin Lay;Jhee Ok-Hwa;Kang Ju-Seop;Kim Won-Ho;Choi Kyung-Min;Park Gil-Soon;Lee Jin-Sang;Park Hyun;Rho Min-Suk;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1269-1275
    • /
    • 2006
  • The selection of multienzyme complex-producing bacteria under aerobic condition was conducted for improving the degradation of lignocellulosic substances. The criteria for selection were cellulase and xylanase enzyme production, the presence of cellulose-binding domains and/or xylan-binding domains in enzymes to bind to insoluble substances, the adhesion of bacterial cells to insoluble substances, and the production of multiple cellulases and xylanases in a form of a high molecular weight complex. Among the six Bacillus strains, isolated from various sources and deposited in our laboratory, Paenibacillus curdlanolyticus B-6 strain was the best producer of cellulase and xylanase enzymes, which have both cellulose-binding factors (CBFs) and xylan-binding factors (XBFs). Moreover, multiple carboxymethyl cellulases (CMCases) and xylanases were produced by the strain B-6. The zymograms analysis showed at least 9 types of xylanases and 6 types of CMCases associated in a protein band of xylanase and cellulase with high molecular weight. These cells also enabled to adhere to both avicel and insoluble xylan, which were analyzed by scanning electron microscopy. The results indicated that the strain B-6 produced the multienzyme complex, which may be cellulosome or xylanosome. Thus, P. curdlanolyticus B-6 was selected to study the role and interaction between the enzymes and their substrates and the cooperation of multiple enzymes to enhance the hydrolysis due to the complex structure for efficient cellulases and xylanases degradation of insoluble polysaccharides.

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli;Serpa, Viviane;Da Silva Delabona, Priscila;Manzine, Livia Regina;Voltatodio, Maria Luiza;Alves, Renata;Mello, Bruno Luan;Nei, Pereira Jr.;Farinas, Cristiane Sanches;Golubev, Alexander M.;Santos, Maria Auxiliadora Morim;Polikarpov, Igor
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.808-817
    • /
    • 2011
  • Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.