• 제목/요약/키워드: Aviation turbulence

검색결과 45건 처리시간 0.019초

항공 사고에서의 과실 이론 - 일본 항공 사고 판례를 중심으로 - (Negligence theory of Aviation accident with reference to the japanese aviation accident precedent)

  • 황호원;함세훈
    • 항공우주정책ㆍ법학회지
    • /
    • 제23권2호
    • /
    • pp.115-136
    • /
    • 2008
  • 현재 민간 항공기의 기술 수준은 일반인들, 그리고 비행기의 선구자인 라이트 형제조차 상상하지 못할 만큼 발전되어 있다. 초기 조종사들과 달리 오늘 날의 조종사들은 항법사, 통신사, flight engineer 등 3명을 대신한 Flight Control Computer(FCC)등의 computer 탑재 장비들을 이용하여 안전하게 운항, 착륙할 수 있다. 그러나 불행하게도 이러한 최첨단의 항공기에서도 사고가 발생하고 있으며 대부분의 원인은 인간의 실수에서 기인한다. 조종사가 치명적인 실수를 하게 되는 이유 중의 하나는 복잡한 logic으로 운영되는 탑재 computer 장비와 아직도 완벽히 통제할 수 없는 기상 현상 때문이다. 항공기가 첨단화될수록 더 복잡한 절차의 운항이나 혹독한 기상에서 운항이 가능하지만 이와 비례하여 안전 운항에 대한 최종적인 의무를 부여받은 조종사들의 부담은 커져갈 수밖에 없는 것이 현실이다. 그러나 현재 우리나라의 과실이론은 현실적으로 빈번히 발생되고 있는 차량 사고나 의료 사고에 맞추어 발전하였기에 다양한 원천에서 발생하는 크고 작은 위협 환경을 갖고 있는 첨단의 항공 분야의 과실이론과 간극이 있다고 할 수 있다. 허용된 위험 이론을 고려해볼 때 현재 운항되고 있는 고속철이나 우주선은 이미 운용하는 인간의 능력을 초과하여 운행되고 있기에 첨단 분야에 적합한 과실이론이 필요한 시점이다. 따라서 본 연구에서는 2007년 항소심 판결이 난 자동 조종 장치(autopilot)와 조종사 그리고 불상의 원인들이 복합적으로 작용하여 발생한 JAL 706 항공 판례를 중심으로 일본 항공 판례 및 우리 항공판례를 비교 검토하고 기존의 과실 이론을 비교하여 항공 사고에 적합한 과실이론을 제시하고자 한다. 우리 나라도 항공사고 특성의 하나인 복합성을 고려하여 사고 조사나 판결에서도 사고와 직접적으로 연결되지 않는 사항에 대하여 주의의무 위반 관계를 과감히 배제하는 것이 필요하다. 모든 구체적 사건을 포섭할 수 있는 완벽한 형법 이론이 존재하지 않지만 상당인과관계설은 구체적 사건에서 판단자의 평가 여하에 따라 서로 다른 결론에 도달할 수 있고 항공기는 때때로 조종사가 통제할 수 있는 영역을 넘어서 운항되는 고속화된 교통수단이고 인간과 computer 그리고 기상이 interface되어 운항되기에 일반적 교통사고의 이해를 적용하기에는 무리가 따르기에 우리나라의 항공사고에서 객관적 귀속의 척도 사용을 고려할 때가 되었다고 생각된다.

  • PDF

고양력장치 설계 최적화 및 풍동시험 (High Lift Device Design Optimization and Wind Tunnel Tests)

  • 이융교;김철완;조태환
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.78-83
    • /
    • 2010
  • 본 연구에서는 높은 양력을 얻기 위하여 플랩 형상 최적 설계를 시도하였다. 플랩 형태는 플랩 중에서 가장 효율이 좋은 파울러 플랩(fowler flap)이다. 플랩 설계는 최적화 기법을 활용하여 진행하였고 최적화의 초기 형상은 general aviation airfoil과 Wentz 등이 개발한 플랩이다. 최적화 방법으로는 반응면 기법 (Response Surface Method)이 사용되었으며, Hicks-Henne 형상함수가 사용되었고, GA(W)-1 익형과 fowler flap이 조합된 형상의 유동장에 대하여 Navier-Stokes 해석을 수행하였다. 상용 최적화 프로그램인 Visual-Doc, 격자 생성 프로그램인 Gambit/Tgrid, 그리고 유동해석에는 Fluent를 이용하였다. 플랩의 윗면 형상과 gap에 대한 최적화를 수행하여 착륙조건에서의 양력이 증가하였다. 초기 형상과 최적화된 형상의 공력특성 변화를 관찰하기 위하여 항우연의 1m 풍동에서 시험을 수행하였다. 최적화된 형상은 대체로 예측치와 비슷한 경향을 보이나, 이른 실속이 관찰되었다. 또한, 날개와 플랩 간의 간격을 설계치보다 좁혀 줌으로써 양력특성이 향상됨을 알 수 있었는데, 이는 설계시 사용된 난류 모델의 영향이라 판단된다.

인천 공항 주변 고해상도 항공기 추적 정보 기반의 바람 관측자료 생산 및 품질 검증 (Retrieval and Quality Assessment of Atmospheric Winds from the Aircraft-Based Observation Near Incheon International Airport, Korea)

  • 김정민;김정훈
    • 대기
    • /
    • 제32권4호
    • /
    • pp.323-340
    • /
    • 2022
  • We analyzed the high-resolution wind data of Aircraft-Based Observation from the Mode-Selective Enhanced Surveillance (Mode-S EHS) data in Korea. For assessment of its quality, the Mode-S wind data was compared with the ECMWF ReAnalysis 5 (ERA5) reanalysis and Aircraft Meteorological Data Relay (AMDAR) data for more than 3-months from 7 May 2021 to 24 August 2021 near Incheon International Airport, Korea. Considering that the AMDAR reports are not provided by all commercial aircraft, total number of the Mode-S derived wind data with a second sampling rate was about twice larger than that of available AMDAR wind data. After the quality control procedures by removing erroneous samples, it was found that the root mean square errors (RMSEs) of the Mode-S retrieved winds are similar to that from the AMDAR winds. In particular, between 550 and 650 hPa levels, RMSE of the Mode-S (AMDAR) zonal wind against ERA5 data was about 2.3 m s-1 (1.9 m s-1), and those increased to 3.3 m s-1 (2.4 m s-1) in 200~500 hPa levels. A similar trend was found in the meridional wind, but a distinct positive mean bias of 2.16 m s-1 was observed between 875 and 1,000 hPa levels. Winds retrieved from the Mode-S also showed a good agreement directly with AMDAR data. As the Mode-S provides a large amount of data with a reliable quality, it can be useful for both data assimilation in the numerical weather prediction model and situational awareness of wind and turbulence for aviation safety in Korea.

Heat transfer characteristics of an internal cooling channel with pin-fins and ribbed endwalls in gas turbine blade

  • Vu T.A. Co;Hung C. Hoang;Duy C.K. Do;Son H. Truong;Diem G. Pham;Nhung T.T. Le;Truong C. Dinh;Linh T. Nha
    • Advances in aircraft and spacecraft science
    • /
    • 제11권2호
    • /
    • pp.153-175
    • /
    • 2024
  • In jet engines, turbine blade cooling has an extremely important role. The pin-fin array, which is situated close to the trailing edge of the blade, aids in internal cooling of the gas turbine blades and preserves the structural integrity of the blade. Previous studies often focused on pin-fin configurations, but the current research focuses on improving the geometry at the endwalls to reduce wake vortices behind the pin-fins and enhance heat transfer at the endwalls location. Using the k-ω turbulence model, a numerical study was conducted on a ribbed shape situated on the walls between pin-fin arrays, spanning a Reynolds number range of 7400 to 36000, in order to determine the heat transport characteristics. The heat transfer efficiency coefficient and Nusselt number increase dramatically with the revised wall configuration, according to the numerical data. The channel's heat transfer efficiency is increased by enlarging the heat transfer areas near the pin-fins and by the interaction of the flow with the endwalls. The addition of ribs causes the Nusselt number of the new model to climb from 78% to 96% at the previously given Reynolds numbers, and the heat transfer efficiency index to rise from 60% to 73%. The height (Hr), position (Lr), forward width (Wf), and backward width (Wb) of the ribs are among the geometric elements that were looked at in order to determine how they affected the performance of heat transmission. In comparison to the reference design, the parametric study results demonstrate that the best forward width (Wf/R=18.75%) and backward width (Wb/R=31.25%) increase the heat transfer efficiency index by 0.4% and 1.3%, respectively.

항공기(航空機) 사고조사제도(事故調査制度)에 관한 연구(硏究) (A Study on the System of Aircraft Investigation)

  • 김두환
    • 항공우주정책ㆍ법학회지
    • /
    • 제9권
    • /
    • pp.85-143
    • /
    • 1997
  • The main purpose of the investigation of an accident caused by aircraft is to be prevented the sudden and casual accidents caused by wilful misconduct and fault from pilots, air traffic controllers, hijack, trouble of engine and machinery of aircraft, turbulence during the bad weather, collision between birds and aircraft, near miss flight by aircrafts etc. It is not the purpose of this activity to apportion blame or liability for offender of aircraft accidents. Accidents to aircraft, especially those involving the general public and their property, are a matter of great concern to the aviation community. The system of international regulation exists to improve safety and minimize, as far as possible, the risk of accidents but when they do occur there is a web of systems and procedures to investigate and respond to them. I would like to trace the general line of regulation from an international source in the Chicago Convention of 1944. Article 26 of the Convention lays down the basic principle for the investigation of the aircraft accident. Where there has been an accident to an aircraft of a contracting state which occurs in the territory of another contracting state and which involves death or serious injury or indicates serious technical defect in the aircraft or air navigation facilities, the state in which the accident occurs must institute an inquiry into the circumstances of the accident. That inquiry will be in accordance, in so far as its law permits, with the procedure which may be recommended from time to time by the International Civil Aviation Organization ICAO). There are very general provisions but they state two essential principles: first, in certain circumstances there must be an investigation, and second, who is to be responsible for undertaking that investigation. The latter is an important point to establish otherwise there could be at least two states claiming jurisdiction on the inquiry. The Chicago Convention also provides that the state where the aircraft is registered is to be given the opportunity to appoint observers to be present at the inquiry and the state holding the inquiry must communicate the report and findings in the matter to that other state. It is worth noting that the Chicago Convention (Article 25) also makes provision for assisting aircraft in distress. Each contracting state undertakes to provide such measures of assistance to aircraft in distress in its territory as it may find practicable and to permit (subject to control by its own authorities) the owner of the aircraft or authorities of the state in which the aircraft is registered, to provide such measures of assistance as may be necessitated by circumstances. Significantly, the undertaking can only be given by contracting state but the duty to provide assistance is not limited to aircraft registered in another contracting state, but presumably any aircraft in distress in the territory of the contracting state. Finally, the Convention envisages further regulations (normally to be produced under the auspices of ICAO). In this case the Convention provides that each contracting state, when undertaking a search for missing aircraft, will collaborate in co-ordinated measures which may be recommended from time to time pursuant to the Convention. Since 1944 further international regulations relating to safety and investigation of accidents have been made, both pursuant to Chicago Convention and, in particular, through the vehicle of the ICAO which has, for example, set up an accident and reporting system. By requiring the reporting of certain accidents and incidents it is building up an information service for the benefit of member states. However, Chicago Convention provides that each contracting state undertakes collaborate in securing the highest practicable degree of uniformity in regulations, standards, procedures and organization in relation to aircraft, personnel, airways and auxiliary services in all matters in which such uniformity will facilitate and improve air navigation. To this end, ICAO is to adopt and amend from time to time, as may be necessary, international standards and recommended practices and procedures dealing with, among other things, aircraft in distress and investigation of accidents. Standards and Recommended Practices for Aircraft Accident Injuries were first adopted by the ICAO Council on 11 April 1951 pursuant to Article 37 of the Chicago Convention on International Civil Aviation and were designated as Annex 13 to the Convention. The Standards Recommended Practices were based on Recommendations of the Accident Investigation Division at its first Session in February 1946 which were further developed at the Second Session of the Division in February 1947. The 2nd Edition (1966), 3rd Edition, (1973), 4th Edition (1976), 5th Edition (1979), 6th Edition (1981), 7th Edition (1988), 8th Edition (1992) of the Annex 13 (Aircraft Accident and Incident Investigation) of the Chicago Convention was amended eight times by the ICAO Council since 1966. Annex 13 sets out in detail the international standards and recommended practices to be adopted by contracting states in dealing with a serious accident to an aircraft of a contracting state occurring in the territory of another contracting state, known as the state of occurrence. It provides, principally, that the state in which the aircraft is registered is to be given the opportunity to appoint an accredited representative to be present at the inquiry conducted by the state in which the serious aircraft accident occurs. Article 26 of the Chicago Convention does not indicate what the accredited representative is to do but Annex 13 amplifies his rights and duties. In particular, the accredited representative participates in the inquiry by visiting the scene of the accident, examining the wreckage, questioning witnesses, having full access to all relevant evidence, receiving copies of all pertinent documents and making submissions in respect of the various elements of the inquiry. The main shortcomings of the present system for aircraft accident investigation are that some contracting sates are not applying Annex 13 within its express terms, although they are contracting states. Further, and much more important in practice, there are many countries which apply the letter of Annex 13 in such a way as to sterilise its spirit. This appears to be due to a number of causes often found in combination. Firstly, the requirements of the local law and of the local procedures are interpreted and applied so as preclude a more efficient investigation under Annex 13 in favour of a legalistic and sterile interpretation of its terms. Sometimes this results from a distrust of the motives of persons and bodies wishing to participate or from commercial or related to matters of liability and bodies. These may be political, commercial or related to matters of liability and insurance. Secondly, there is said to be a conscious desire to conduct the investigation in some contracting states in such a way as to absolve from any possibility of blame the authorities or nationals, whether manufacturers, operators or air traffic controllers, of the country in which the inquiry is held. The EEC has also had an input into accidents and investigations. In particular, a directive was issued in December 1980 encouraging the uniformity of standards within the EEC by means of joint co-operation of accident investigation. The sharing of and assisting with technical facilities and information was considered an important means of achieving these goals. It has since been proposed that a European accident investigation committee should be set up by the EEC (Council Directive 80/1266 of 1 December 1980). After I would like to introduce the summary of the legislation examples and system for aircraft accidents investigation of the United States, the United Kingdom, Canada, Germany, The Netherlands, Sweden, Swiss, New Zealand and Japan, and I am going to mention the present system, regulations and aviation act for the aircraft accident investigation in Korea. Furthermore I would like to point out the shortcomings of the present system and regulations and aviation act for the aircraft accident investigation and then I will suggest my personal opinion on the new and dramatic innovation on the system for aircraft accident investigation in Korea. I propose that it is necessary and desirable for us to make a new legislation or to revise the existing aviation act in order to establish the standing and independent Committee of Aircraft Accident Investigation under the Korean Government.

  • PDF