• 제목/요약/키워드: Avian influenza virus

검색결과 123건 처리시간 0.023초

Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor

  • Kim, Shin-Ae;Kim, Sung-June;Lee, Sang-Hun;Park, Tai-Hyun;Byun, Kyung-Min;Kim, Sung-Guk;Shuler, Michael L.
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.392-397
    • /
    • 2009
  • We designed a wavelength interrogation-based surface plasmon resonance (SPR) biosensor to detect avian influenza DNA (AI-DNA). Hybridization reactions between target AI-DNA probes and capture probes immobilized on a gold surface were monitored quantitatively by measuring the resonance wavelength in the visible waveband. The experimental results were consistent with numerical calculations. Although the SPR detection technique does not require the DNA to be labeled, we also evaluated fluorescently-labeled targets to verify the hybridization behavior of the AI-DNA. Changes in resonance were found to be linearly proportional to the amount of bound analyte. A wavelength interrogation-type SPR biosensor can be used for rapid measurement and high-throughput detection of highly pathogenic AI viruses.

수의학강좌 II: 최신 양계 호흡기 질병 동향 및 대처방안

  • 송창선
    • 대한수의사회지
    • /
    • 제46권8호
    • /
    • pp.726-735
    • /
    • 2010
  • 전염성기관지염 바이러스(infectious bronchitis virus: IBV), 조류 뉴모 바이러스(Avian pneumovirus: APV), 뉴캣슬병 바이러스 (Newcastle disease virus: NDV), 조류인플루엔자 바이러스(avian influenza virus: AIV) 전염성 후두기관염 바이러스 (infectious laryngotracheitis virus: ILTV)는 닭의 호흡기에 직접 감염하여 호흡기질환을 일으키는 대표적인 바이러스로 알려져 있다. 그 밖에 아데노바이러스(adenovirus)와 레오바이러스 (reovirus)도 닭의 상부호흡기에 침투하여 피해를 입히는 이차적 원인체로 작용할 수 있다. 이들중 APV와 ILTV는 닭의 호흡기도에 국한되어 증식하지만 IBV, NDV, AIV의 경우 호흡기도 이외의 장기에서 증식이 가능하여 그 피해가 다양하게 나타나 문제 시 되기도 한다 (예: 산란장기 및 신장 (IBV), 소화기 (NDV, IBV, AIV), 중추신경계 (NDV, AIV)). 이외에도 상당수의 감염성 질환이 닭의 호흡기에 영향을 미칠 수 있으나, 해당 농장의 호흡기 피해가 어떤 질병에 의한 것인지 명확히 파악하지 못한 채 단순 항생제 처방에만 의지하는 경우가 많은 것이 현실이다. 따라서 국내 양계농가에서 문제시되는 주요 호흡기 질병과 이들의 감수성을 증대시키는 요인을 파악하는 것이 필요하고, 호흡기 질병의 피해에 대한 재인식과 아울러 호흡기 질병 피해 감소를 위한 진단과 예방노력이 하루속히 정착되어야 할 것이다. 본지에서는 대표적인 호흡기 질병 세가지(전염성기관지염, 조류뉴모바이러스감염증, 뉴캣슬병)의 최근 발생동향과 그 대처방안에 대하여 소개하고자 한다.

  • PDF

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

고병원성 조류인플루엔자(H5N1)에 대한 이산화티타늄 광촉매 처리 필름의 항바이러스성 연구 (Antiviral Effects of Titanium Dioxide Photocatalyst Treated Films against Highly Pathogenic Avian Influenza)

  • 이상도;박현
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.201-206
    • /
    • 2021
  • 고병원성 조류독감 바이러스(H5N1)에 대한 피해가 지속적으로 증가하고 있으나, 이에 대한 항바이러스성 연구는 부족한 상황이다. 본 연구에서는 폴리에틸렌 필름에 Cu/TiO2 광촉매를 코팅하여 H5N1에 대한 항바이러스 특성을 분석하였다. 시료는 광촉매 마스터배치를 제조하여 압출코팅기에서 280℃로 3중 레이어 폴리에틸렌 원단의 양면을 코팅하였다. 그 결과 황색포도상구균과 대장균의 균수가 99.9% 감소되는 것으로 나타났다. 특히 인체감염이 가능한 H5N1형 고병원성 조류인플루엔자는 Cu/TiO2계 필름에 접촉 5분 이내 99.9% 감소하는 것으로 확인되었다. 광촉매를 코팅한 필름의 항균성에 대해서는 알려져 있지만 본 연구를 통해 항바이러스성에 대해서도 확인이 가능하였다.

Insect Cell Surface Expression of Hemagglutinin (HA) of Egyptian H5N1 Avian Influenza Virus Under Transcriptional Control of Whispovirus Immediate Early-1 Promoter

  • Gadalla, M.R.;El-Deeb, A.H.;Emara, M.M.;Hussein, H.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권12호
    • /
    • pp.1719-1727
    • /
    • 2014
  • In the present study, whispovirus immediate early 1 promoter (ie-1) was used to initiate surface expression of the hemagglutinin (HA) protein of Egyptian H5N1 avian influenza virus (AIV) by using the baculovirus expression vector system. The HA gene and whispovirus ie-1 promoter sequence were synthesized as a fused expression cassette (ie1-HA) and successfully cloned into the pFastBac-1 transfer vector. The recombinant vector was transformed into DH10Bac competent cells, and the recombinant bacmid was generated via site-specific transposition. The recombinant bacmid was used for transfection of Spodoptera frugiperda (Sf-9) insect cells to construct the recombinant baculovirus and to induce expression of the HA protein of H5N1 AIV. The recombinant glycoprotein expressed in Sf-9 cells showed hemadsorption activity. Hemagglutination activity was also detected in both extra- and intracellular recombinant HAs. Both the HA and hemadsorption activities were inhibited by reference polyclonal anti-H5 sera. Significant expression of the recombinant protein was observed on the surface of infected insect cells by using immunofluorescence. SDS-PAGE analysis of the expressed protein revealed the presence of a visually distinguishable band of ~63 kDa in size, which was absent in the non-infected cell control. Western blot analysis confirmed that the distinct 63 kDa band corresponded to the recombinant HA glycoprotein of H5N1 AIV. This study reports the successful expression of the HA protein of H5N1 AIV. The expressed protein was displayed on the plasma membrane of infected insect cells under the control of whispovirus ie-1 promoter by using the baculovirus expression vector system.

Reverse transcription loop-mediated isothermal amplification assay for the rapid and simultaneous detection of H5 and other subtypes of avian influenza viruses

  • Park, Yu-Ri;Kim, Eun-Mi;Han, Do-Hyun;Kang, Dae-Young;Yeo, Sang-Geon;Park, Choi-Kyu
    • 한국동물위생학회지
    • /
    • 제40권1호
    • /
    • pp.15-20
    • /
    • 2017
  • A two-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was designed for the rapid visual detection of the M gene of all subtypes of avian influenza virus (AIV) and the H5 gene of the H5 subtype of highly pathogenic AIV (HPAIV). The reaction carried out in two tubes in a single step at $58^{\circ}C$ for 40 min, and the assay results could be visually detected by using hydroxynaphthol blue dye. Using M or H5 gene-specific primers, the assay successfully detected all subtypes or H5 subtypes of AIVs, including the Korean representative H5N1 and H5N8 HPAIVs. The detection limit of the assay was approximately $10^{2.0}$ $EID_{50}/reaction$ for the M and H5 genes of H5N1 HPAIV, respectively, and was more sensitive than that of previously reported RT-LAMP and comparable to that of real-time RT-PCR. These results suggest that the present RT-LAMP assay, with its high specificity, sensitivity, and simplicity, will be a useful diagnostic tool for surveillance of currently circulating H5 HPAIVs and other subtypes of AIV in bird population, even in under-equipped laboratories.

고병원성 조류인플루엔자 (HPAI)의 에어로졸을 통한 공기 전파 예측을 위한 공기유동학적 확산 모델 연구 (Aerodynamic Approaches for the Predition of Spread the HPAI (High Pathogenic Avian Influenza) on Aerosol)

  • 서일환;이인복;문운경;홍세운;황현섭;;권경석;김기연
    • 한국농공학회논문집
    • /
    • 제53권1호
    • /
    • pp.29-36
    • /
    • 2011
  • HPAI (High pathogenic avian influenza) which is a disease legally designated as an epidemic generally shows rapid spread of disease resulting in high mortality rate as well as severe economic damages. Because Korea is contiguous with China and southeast Asia where HPAI have occurred frequently, there is a high risk for HPAI outbreak. A prompt treatment against epidemics is most important for prevention of disease spread. The spread of HPAI should be considered by both direct and indirect contact as well as various spread factors including airborne spread. There are high risk of rapid propagation of HPAI flowing through the air because of collective farms mostly in Korea. Field experiments for the mechanism of disease spread have limitations such as unstable weather condition and difficulties in maintaining experimental conditions. In this study, therefore, computational fluid dynamics which has been actively used for mass transfer modeling were adapted. Korea has complex terrains and many livestock farms are located in the mountain regions. GIS numerical map was used to estimate spreads of virus attached aerosol by means of designing three dimensional complicated geometry including farm location, road network, related facilities. This can be used as back data in order to take preventive measures against HPAI occurrence and spread.

Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9

  • Zhang, Songzi;Shin, Juyoun;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.40.1-40.8
    • /
    • 2020
  • Avian influenza (AIV) outbreaks can induce fatal human pulmonary infections in addition to economic losses to the poultry industry. In this study, we aimed to develop a rapid and sensitive point-of-care AIV test using loop-mediated isothermal amplification (LAMP) technology. We designed three sets of reverse transcription LAMP (RT-LAMP) primers targeting the matrix (M) and hemagglutinin (HA) genes of the H5 and H9 subtypes. RT-LAMP targeting the universal M gene was designed to screen for the presence of AIV and RT-LAMP assays targeting H5-HA and H9-HA were designed to discriminate between the H5 and H9 subtypes. All three RT-LAMP assays showed specific amplification results without nonspecific reactions. In terms of sensitivity, the detection limits of our RT-LAMP assays were 100 to 1,000 RNA copies per reaction, which were 10 times more sensitive than the detection limits of the reference reverse-transcription polymerase chain reaction (RT-PCR) (1,000 to 10,000 RNA copies per reaction). The reaction time of our RT-LAMP assays was less than 30 min, which was approximately four times quicker than that of conventional RT-PCR. Altogether, these assays successfully detected the existence of AIV and discriminated between the H5 or H9 subtypes with higher sensitivity and less time than the conventional RT-PCR assay.

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • 신정화;모인필
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2006년도 제23차 정기총회 및 학술발표회
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF

Development of Multiplex RT-PCR Assays for Rapid Detection and Subtyping of Influenza Type A Viruses from Clinical Specimens

  • Chang, Hee-Kyoung;Park, Jeung-Hyun;Song, Min-Suk;Oh, Taek-Kyu;Kim, Seok-Young;Kim, Chul-Jung;Kim, Hyung-Gee;Sung, Moon-Hee;Han, Heon-Seok;Hahn, Youn-Soo;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1164-1169
    • /
    • 2008
  • We developed multiplex RT-PCR assays that can detect and identify 12 hemagglutinin (H1-H12) and 9 neuraminidase (N1-N9) subtypes that are commonly isolated from avian, swine, and human influenza A viruses. RT-PCR products with unique sizes characteristic of each subtype were amplified by multiplex RT-PCRs, and sequence analysis of each amplicon was demonstrated to be specific for each subtype with 24 reference viruses. The specificity was demonstrated further with DNA or cDNA templates from 7 viruses, 5 bacteria, and 50 influenza A virus-negative specimens. Furthermore, the assays could detect and subtype up to $10^5$ dilution of each of the reference viruses that had an original infectivity titer of $10^6\;EID_{50}/ml$. Of 188 virus isolates, the multiplex RT-PCR results agreed completely with individual RT-PCR subtyping results and with results obtained from virus isolations. Furthermore, the multiplex RT-PCR methods efficiently detected mixed infections with at least two different subtypes of influenza viruses in one host. Therefore, these methods could facilitate rapid and accurate subtyping of influenza A viruses directly from field specimens.