• Title/Summary/Keyword: Average output current

Search Result 158, Processing Time 0.039 seconds

Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate (금속 기판적용을 통한 ZnO 나노로드기반 나노제너레이터 제조)

  • Baek, Seong-Ho;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.331-336
    • /
    • 2015
  • We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators (PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solution based method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameter of 75~80 nm and length of $1{\sim}1.5{\mu}m$. The ZnO NRs showed abnormal photoluminescence specrta which is attributed from surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates show typical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity dependent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain frequency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 times without showing degradation of output voltage. The current output from the PNG is $0.7{\mu}A/cm^2$ which is a typical out-put range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, high electrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Kim, Marn-Go;Jung, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.481-482
    • /
    • 2011
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor values at the mode boundary as functions of the input voltage and the time delay.

  • PDF

Analysis and Evaluation of Buck Converter with LC Input Filter for a PTC Heater in the Electric Vehicle (전기자동차용 PTC 히터 구동을 위한 입력 필터를 갖는 벅 컨버터의 특성 분석 및 성능 평가)

  • Jeon, Yong-Sung;Shin, Hye-Su;Chae, Beom-Seok;La, Jae-Du;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.59-66
    • /
    • 2012
  • Recently, the market of Electric Vehicle(EV) is increasing more and more than before. Thus a new heater for the EV is required. The PTC devices may be used the heater for the EV. In this paper, a simple DC-DC Converter is proposed as the PTC Heater for the EV. The proposed circuit was optimally desired to decrease the stress of the power devices and reduce the current ripples. To apply the result of the test in the laboratory to the actual EV system with the high DC voltage, ripple current, average current and output peak current are predicted by using the least-squares method. Finally, the proposed circuit is validated by various experiments.

Fabrication of High Voltage a-Si:H TFT Plasma Chemical Vapor Deposition (플라즈마 CVD에 의한 고전압 비정질 실리콘 박막 트랜지스터의 제작)

  • Lee, Woo-Sun;Kang, Young-Chul;Kim, Hyung-Gon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.312-317
    • /
    • 1994
  • We studied the fabrication and electrical characteristics of high voltage hydrogenerated amorphous silicon thin film transistor using plasma enchanced chemical vapor deposition(PECVD). The device shows 2500${\AA}$ SiOS12T, 400-1500${\AA}$ a-Si tickness, 350V output voltage and 9.55${\times}$10S04T average on/off current ratio. We found that the leakage current of high voltage TFT occurred 0-70V drain voltage. As the leakage current depend on the a-Si thickness, the leakage current of high voltage TFT decreased by reduction of the a-Si thickness.

A low noise PLL with frequency voltage converter and loop filter voltage detector (주파수 전압 변환기와 루프 필터 전압 변환기를 이용한 저잡음 위상고정루프)

  • Choi, Hyek-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • This paper presents a jitter and phase noise characteristic improved phase-locked loop (PLL) with loop filter voltage detector(LFVD) and frequency voltage converter(FVC). Loop filter output voltage variation is determined through a circuit made of resistor and capacitor. The output signal of a small RC time constant circuit is almost the same as to loop filter output voltage. The output signal of a large RC time constant circuit is the average value of loop filter output voltage and becomes a reference voltage to the added LFVD. The LFVD output controls the current magnitude of sub-charge pump. When the loop filter output voltage increases, LFVD decreases the loop filter output voltage. When the loop filter output voltage decreases, LFVD increases the loop filter output voltage. In addition, FVC also improves the phase noise characteristic by reducing the loop filter output voltage variation. The proposed PLL with LFVD and FVC is designed in a 0.18um CMOS process with 1.8V power voltage. Simulation results show 0.854ps jitter and 30㎲ locking time.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Song, Ki-Nam;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

Characteristics Analysis of Stabilizing Operation of Photovoltaic Inverter (태양광 발전용 인버터의 안정화 운전 특성해석)

  • Cho, G.B.;Kim, H.S.;Yu, G.J.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.742-745
    • /
    • 1993
  • In this paper, instantaneous current tracking control inverter is applied to photovoltaic system and then optimum operating area is described by state space average method for optimum design of maximum output control. Also control system is realized by DSP and excellence of system shows the effectiveness of inverter system using the instantaneous control method.

  • PDF

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.